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Chapter 1

Introduction

Geometric quantisation is the process of constructing a quantum mechanical
system corresponding to a classical system via methods of differential geometry.
This geometric approach of quantisation provides more insight than deformation
quantisation as it enables one to construct the phase space of the quantum
theory as well.

A classical phase space is the set of pure states of a system. Mathematically
the classical phase space is defined by a symplectic manifold, which is a smooth
manifold with an additional piece of structure, a so called symplectic form.
Classical observables, such as position or energy, are smooth functions defined
on the classical phase space. The symplectic form fixes the dynamics of the
classical observables, via Poisson brackets.

A quantum phase space is built out of a Hilbert space, the so called quantum
Hilbert space, equipped with a representation of the Weyl algebra. A pure
state corresponds to a unitary vector of the quantum Hilbert space (up to a
phase). These states are called wave functions and they encode the physical
states of the system. The quantum analogue to classical observables are (self-
adjoint) operators acting on this Hilbert space, the quantum operators. The
commutator of the quantum operators, the analogue of the Poisson brackets in
the classical system, encodes the dynamics of the quantum mechanical system,
in the Heisenberg picture.

There is a family of quantum theories parameterised by the variable ~, the
quantum of action. The correspondence principle tells us that in the classical
limit, i.e. when ~ goes to zero, the classical system corresponding to the quan-
tum one should be recovered. Quantisation gives a way to find the quantum
theories corresponding to a given classical theory. In other words, the goal of
quantisation is to construct a quantum Hilbert space with quantum operators
corresponding to classical observables, which follow the same dynamics, i.e. the
Poisson brackets should agree with the commutator in the classical limit. One
possibility to achieve this goal is given by geometric quantisation, which we shall
describe in the following.

We first need to make sure that geometric quantisation is applicable. Indeed,
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not all classical systems are quantisable. We therefore need some conditions to
hold on the given classical phase space, the so called prequantisation criteria.
Intuitively these conditions already impose a notion of discreteness, crucial in
quantum mechanics. If the classical phase space fulfills the prequantisation cri-
teria, we can proceed with prequantisation. This means constructing a Hilbert
space out of sections of a prequantum line bundle. The Hilbert space, thus con-
structed, is however too big, because its elements can depend on both position
and momentum coordinates of the symplectic manifold, which is forbidden by
the Heisenberg uncertainty principle from quantum mechanics. We therefore
need to restrict this Hilbert space. Geometric quantisation imposes the use of
polarisation to do this. A polarisation naturally leads to local choices of canon-
ical coordinates and we can thus choose for example sections which are only
dependent on the position coordinates. We get the desired quantum Hilbert
space out of the completion of the space of polarised sections, where one may
try to construct quantum operators.

As an illustration, we will work out in full details the geometric quantisation
of a harmonic oscillator of arbitrary dimensions. For this, we will use two
different types of polarisation, real and Kähler polarisations. This results in
two different representations of the Weyl algebra, which are unitary equivalent
according to the Stone–von Neumann theorem. We prove this explicilty by
constructing the Segal–Bargmann transform and showing that it intertwines
the two representations.

A particular effort has been spent in order to make this work self-contained.
Chapter 2 is therefore dedicated to a thorough differential geometry background.
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Chapter 2

Differential Geometry
Background

2.1 Disclaimer

This section should be seen as a review of the most important objects which
are used in geometric quantisation. We will sometimes define objects which are
more general than the ones used in the examples of this work. These objects
are however crucial to understand more complicated examples. Therefore, one
could understand the rest of this work by neglecting the sections concerning
principal bundles, frame and associated bundles, principal bundle connection as
well as connections on frame and associated bundles. Most of the propositions
in this section are going to be left without proof (sometimes a sketch of the
proof will be given) since these are often quite involved and would make the
content of this work too long. All the proofs can be found in [1] or in [2].

2.2 Smooth Manifolds and their Tangent Spaces

In this chapter, we will discuss a few of the most essential objects of differential
geometry. We will first define smooth manifolds and their tangent spaces and
finally we will discuss vector fields which are smooth maps from the smooth
manifold to the tangent space.

2.2.1 Smooth Manifolds

For the following definitions X is a topological space.

Definition 2.2.1. We call X Hausdorff if for every pair x 6= y of points in X
there are open subsets U, V ⊆ X such that x ∈ U , y ∈ V and U ∩ V = ∅.

Definition 2.2.2. A collection of open subsets of X is denoted {Ua | a ∈ A} for
A some index set. Such an open subset is called an open cover if X = ∪a∈AUa.
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Definition 2.2.3. An open cover {Ua | a ∈ A} is said to be locally finite
if for every x ∈ X there exists a neighbourhood W of x such that the set
{a ∈ A | Ua ∩W 6= ∅} is finite. A refinement is another open cover {Vb | b ∈ B}
such that for every b ∈ B there exists a ∈ A with Vb ⊆ Ua.

Definition 2.2.4. The topological space X is said to be paracompact if every
open cover has a locally finite refinement.

Definition 2.2.5. A homeomorphism is a continuous map between two topo-
logical spaces whose inverse is also continuous.

Definition 2.2.6. The topological space X is said to be locally Euclidean of
dimension n if for every point x ∈ X there exists a neighbourhood U of x, an
open set O ⊆ Rn, and a homeomorphism σ : U → O.

Definition 2.2.7. A topological manifold of dimension n is a topological space
M with the following properties:

1. it is locally Euclidean of dimension n

2. it is Hausdorff and has at most countably many connected components

3. it is paracompact.

Definition 2.2.8. Let Oa ⊆ Rn and Ob ⊆ Rm open sets with n,m ∈ N. A
differentiable map f : Oa → Ob is of class Cr if it is r-times differentiable and
the differential of order r is continuous. We say that f is smooth or of class C∞

if f is of class Cr for every r ≥ 1. If f is both smooth and bijective and the
inverse function is also smooth then we say that f is a diffeomorphism.

Definition 2.2.9. LetM be a topological manifold of dimension n and {Ua | a ∈
A} an open cover of M . For each a ∈ A, we define Oa as an open set in Rn and
σa : Ua → Oa a homeomorphism such that the following compatibility condition
is satisfied. Suppose a, b ∈ A are such that Ua ∩ Ub 6= ∅. Then the composition

σb ◦ σ−1
a |σa(Ua∩Ub) : σa(Ua ∩ Ub)→ σb(Ua ∩ Ub)

should be a diffeomorphism. A smooth atlas on M is then the collection:

Σ = {σa : Ua → Oa | a ∈ A}

The map σa : Ua → Oa is called a chart of the atlas Σ and the composition
σb ◦ σ−1

a |σa(Ua∩Ub) is called a transition map. We will denote an atlas Σ by the
tuple (Ua, σa).

Remark 2.2.10. We will from now on drop the restriction for the transition
maps for convenience, i.e. we will only write σb ◦ σ−1

a .

Definition 2.2.11. A smooth structure on a topological manifold is an equiva-
lence class of smooth atlases, where two smooth atlases Σ1 and Σ2 are equivalent
if their union is also a smooth atlas.
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Remark 2.2.12. A smooth structure contains a unique maximal atlas being
the union of all the atlases in the equivalence class. We will then normally work
with the preferred representative of the class, namely the maximal atlas.

Finally we can define what a smooth manifold is, in the following way.

Definition 2.2.13. A smooth manifold of dimension n is a pair (M,Σ) where
M is a topological manifold of dimension n and Σ is a smooth structure on M .

Example 2.2.14. We cite a few important examples of smooth manifolds:

• Any vector space V of dimension k is a smooth manifold. One can show
that a vector space is a topological manifold and the atlas contains one
single chart which maps the whole vector space to Rk. Indeed one can
choose a basis B = (v1, ..., vk) ⊆ V . Then the chart can be defined by
setting σ : V → Rk, vi 7→ ei for any i ∈ {1, ..., k} and (ei)i∈1,...,k the
standard basis of Rk. There is obviously no compatibility condition to
check.

• Not every subset of a vector space is a smooth manifold. Take R2 with
V ⊆ R2 the subset composed of two lines crossing each other at the ori-
gin. Assume that we have a chart σ mapping a neighbourhood of the
crossing to R. If one takes the origin away, V gets split into four different
connected components. However removing σ(0) from R will result in only
two connected components. This leads to a contradiction since a chart
should be a homeomorphism.

• The unit sphere Sn := {x ∈ Rn+1 | |x| = 1}. First, we recall the definition
of compactness. A topological space is called compact if it is Hausdorff and
each of its open cover has a finite subcover. The sphere Sn is a compact
smooth manifold of dimension n. We can indeed define a smooth atlas in
the following way. We denote the poles of the sphere with xN := (0, ..., 0, 1)
and xS := (0, ..., 0,−1). If n = 2, xN is the north pole and xS is the south
pole of the 2-sphere. Let UN be the sphere Sn without xN and US be the
sphere Sn without xS , i.e. UN := Sn \ {xN} and US := Sn \ {xS} two
open subsets of Sn. Then {UN , US} be an open cover of Sn. We can then
define the charts σN : UN → Rn, (x1, ..., xn+1) 7→ 1

1−xn+1
(x1, ..., xn) and

σS : US → Rn, (x1, ..., xn+1) 7→ 1
1+xn+1

(x1, ..., xn). These are the stereo-

graphic projections from the poles. The transition maps are given by σN ◦
σ−1
S = σS ◦ σ−1

N : Rn \ {0} → Rn \ {0}, (y1, ..., yn) 7→ 1∑n
i=1(yi)2

(y1, ..., yn).

Indeed, one can check that (y1, ..., yn) 7→ 1∑n
i=1(yi)2

(y1, ..., yn) is a diffeo-

morphism, because the denominator of higher order derivatives is only
vanishing at 0 ∈ Rn.

• Every open subset U of a manifold M is a manifold. One can indeed check
that U can be equipped with the topology and the atlas induced by M .
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For the following definitions we will denote M for a smooth manifold of
dimension n and x a point in M . We will use the letter O for open subsets of
Rn and U for open subsets of smooth manifolds. Finally, we will denote with
σ : U → O a chart on M .

Definition 2.2.15. Let f : O ⊆ Rn → Rk be a smooth map as defined in
Definition 2.2.8. Then fi := ui ◦ f is the ith component of f , where ui is the
canonical projection on the ith factor. We denote the Jacobian matrix of f at a
point x as Df(x), the k×n matrix whose (i, j)th entry is ∂fi

∂xj
(x) := ∂

∂xj
(ui ◦ f)

the partial derivative of fi, where xj denotes the canonical coordinates. A
column of the matrix Df(x) is denoted by Djf(x) and the (i, j)th entry of
Df(x) is denoted by Dj(u

i ◦ f)(x).

Definition 2.2.16. Let φ : M → N a continuous map between two smooth
manifolds. Let x ∈ M be a point with Ua a neighbourhood of x and Ub a
neighbourhood of φ(x). Let σ : Ua → Oa be any chart on M and τ : Ub → Ob
be any chart on N . Then φ is called a smooth map if the composition:

τ ◦ φ ◦ σ−1 : σ(Ua ∩ φ−1(Ub))→ τ(φ(Ua) ∩ Ub)

is of class C∞ as in Definition 2.2.8. If φ is smooth and bijective and the inverse
function N →M is also smooth then φ is said to be a diffeomorphism.

Remark 2.2.17. We denote the space of all the smooth maps from M to N
with C∞(M,N). If N = R we write C∞(M) instead of C∞(M,R).

For a chart σ : U → O on M , one can show that ui ◦ σ is a smooth function
from U to R.

Definition 2.2.18. For x ∈ M and σ defined on a neighbourhood of x, we
denote the function ui ◦ σ ∈ C∞(U) with xi. We say that xi are the local
coordinates about x in the chart σ.

2.2.2 Tangent Spaces

Now we will move on to tangent spaces, which will help us define the tangent
map Dφ of a smooth map φ : M → N , for M , N smooth manifolds. The
tangent map is the best linear approximation of φ around x. We will give
two viewpoints of tangent spaces: one abstract definition via derivations of the
R-algebra C∞(M) and another more concrete one via curves on the smooth
manifold.

Definition 2.2.19. A derivation of C∞(M) at x is a linear map w : C∞(M)→
R which satisfies the derivation property (Leibniz) w(fg) = f(x)w(g)+g(x)w(f)
for f, g ∈ C∞(M).

Definition 2.2.20. The tangent space of M at x ∈M is the space of derivations
at x as in Definition 2.2.19. We denote it by TxM .

Proposition 2.2.21. The space of derivations at x is a vector space.
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Proof. Let v, w ∈ TxM and f, g ∈ C∞(M). We only verify that v + w is also a
derivation, since the other conditions follow directly:

(v + w)(fg) = v(fg) + w(fg)

= f(x)v(g) + g(x)v(f) + f(x)w(g) + g(x)w(f)

= f(x)(v + w)(g) + g(x)(v + w)(f).

We will now denote with v a tangent vector of TxM .

Remark 2.2.22. The derivation defined above depends on the chosen local
neighbourhood around x. A more elegant way of defining the tangent space
would be a definition which doesn’t depend on the choice of the neighbourhood.
This is possible with germs of smooth functions which are equivalence classes
of smooth functions on a neighbourhood of x. Two smooth functions defined
on neighbourhoods of x are equivalent if they coincide on an open subset of the
intersection of their domain. With such a definition one still has the information
about the intrinsic local behaviour around x of the smooth functions but without
specifying the neighbourhood around x. The interested reader can find more
about this topic in [1].

Definition 2.2.23. Let x be any point in U ⊆M an open set. Define the map
∂
∂xi

∣∣
x

as:

∂

∂xi

∣∣∣
x

: C∞(U)→ R ,
∂

∂xi

∣∣∣
x
(f) := Di(f ◦ σ−1)(σ(x))

Proposition 2.2.24. The map ∂
∂xi

∣∣
x

of Definition 2.2.23 is a derivation.

Proof. It is clear that it is R-linear. Let f, g ∈ C∞(M). Then we have:

∂

∂xi

∣∣∣
x
(fg) = Di(fg ◦ σ−1)(σ(x))

=
(∂fg) ◦ σ−1

∂xi
(σ(x)) +

(f∂g) ◦ σ−1

∂xi
(σ(x))

= g(x)
∂

∂xi

∣∣∣
x
(f) + f(x)

∂

∂xi

∣∣∣
x
(g)

where we used Definition 2.2.15 to write Di(fg ◦ σ−1)(σ(x)) in the usual form
of partial derivative.

Proposition 2.2.25. Let x ∈ U . The ordered set ( ∂
∂x1
|x, ..., ∂

∂xn
|x) forms a

basis of TxM . Hence the dimension of TxM equals the dimension of M .

Definition 2.2.26. Let M and N be smooth manifolds and let φ : M → N be
a smooth map. Fix x ∈M and v ∈ TxM . Let w ∈ Tφ(x)N be the tangent vector
which satisfies w(f) := v(f ◦ φ), ∀f ∈ C∞(N). We denote Dφ(x) : TxM →
Tφ(x)N thus defined v 7→ w = Dφ(x)[v]. We call Dφ(x) the tangent map of φ
at x.
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Proposition 2.2.27. The tangent map Dφ(x) is a linear map.

Proof. Let λ1, λ2 ∈ C and v1, v2 ∈ TxM .

Dφ(x)[λ1v1 + λ2v2] = (λ1v1 + λ2v2)(f ◦ φ)

= λ1(v1)(f ◦ φ) + λ2(v2)(f ◦ φ)

= λ1Dφ(x)[v1] + λ2Dφ(x)[v2]

Remark 2.2.28. The other possible definition of the tangent space uses the
notion of a smooth curve in a smooth manifold.
A smooth curve in a smooth manifold M is a smooth map γ : (a, b) → M
where the interval (a, b) ⊆ R is an open subset of R equipped with the canonical
smooth structure. Let ε ∈ R>0. A velocity vector at x ∈ M is an equivalence
class of smooth curves γ : (−ε, ε) → M such that γ(0) = x. The equivalence
relation is the following: γ is equivalent to δ if (σ ◦ γ)′(0) = (σ ◦ δ)′(0), where
σ is some chart centered about x and ′ is the usual derivative of real functions.
We denote the space of all velocity vectors at x ∈M with T vxM which one can
show to be a vector space.
The map T vxM 7→ TxM, [γ] 7→ γ′(0) is well-defined and is an isomorphism. In
words, we can associate to each smooth curve γ : (−ε, ε) → M with γ(0) = x
a tangent vector in TxM by taking its velocity vector. The velocity vector is
indeed a derivation on C∞(M) by setting γ′(t)(f) := (f ◦ γ)′(t), f ∈ C∞(M).
One can check that it is well-defined by verifying that for two curves in the same
equivalence class γ, δ ∈ [γ], (f ◦ γ)′(0) = (f ◦ δ)′(0) for any f ∈ C∞(M).
We now understand the intuition behind tangent vectors. For example the
velocity vector of a curve on the unit sphere S2 gives a vector tangent to the
sphere (in the usual sense).

Proposition 2.2.29. Let M be a smooth manifold with the smooth atlas Σ =
(Ua, σa) with the chart σa : Ua → Oa ⊆ Rn. Consider the disjoint union of the
tangent spaces:

TM :=
⊔
x∈M

TxM.

The space TM can be endowed with the structure of a smooth manifold induced
by the smooth structure of M .

Proof. We first show that we can define a topology on TM . We declare TM |Ua
:=⊔

x∈Ua
TxM to be open. This defines a toplogy on TM . Indeed TM |Ua

∩
TM |Ub

=
⊔
x∈Ua∩Ub

TxM = TM |Ua∩Ub
is again open. Similarly,

⋃
i∈I TM |Ui

=
TM |⋃

i∈I Ui
for some index set I is open. Now we show that there is an atlas

induced by the atlas Σ of M . Let xia be the local coordinates associated to the
local chart σa. For p ∈ TM |Ua

=
⊔
x∈Ua

TxM , there is a unique x ∈ Ua such
that p = (x, v) with v ∈ TxM . Since v ∈ TxM we can write it as a linear combi-
nation v =

∑
i λi

∂
∂xi

a
|x, λi ∈ R. We define the map σ̃a : TM |Ua

→ Oa × Rn by
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setting σ̃a(p) = σ̃a(x,
∑
i λi

∂
∂xi

a
|x) := (σa(x), (λ1, ..., λn)). The map σ̃a is a local

chart because σa is a local chart for M and a change of basis in Rn is given by
multiplication with invertible matrices. This shows that Σ̃ = (TM |Ua , σ̃a) is a
smooth atlas.

Definition 2.2.30. The tangent bundle is the disjoint union of tangent spaces
TM endowed with the structure of a smooth manifold from Proposition 2.2.29.
We denote an element of TM as a pair (x, v) to indicate that v ∈ TxM . There
is a smooth map π : TM →M given by π(x, v) = x.

We will actually understand later that the tangent bundle TM is an example
of a vector bundle (and one of the most important examples). Vector bundles
are going to be central in the process of geometric quantisation.

Before discussing vector fields we now give a few important definitions which
require the tangent map. Immersed submanifold are going to be useful when
defining distributions and embedded manifolds are going to be used when dis-
cussing fibre bundles.

Definition 2.2.31. A smooth map f : M → N between two smooth manifolds
is called a submersion if its derivative is surjective.

Definition 2.2.32. Let φ : M → N be a smooth map between smooth man-
ifolds. We say that φ is an immersion if the linear map Dφ(x) is injective for
every x ∈M . If in addition φ itself is injective then we say that φ is an injective
immersion. If in addition φ maps M homeomorphically on to φ(M) we say that
φ is an embedding.

Definition 2.2.33. Let M and N be smooth manifolds. We say that M is an
immersed submanifold of N if the inclusion ı : M ↪→ N is an immersion. We
denote the immersed submanifold with (M, ı).

Definition 2.2.34. Let M and N be smooth manifolds with M ⊆ N . We
say that M is an embedded submanifold of N if the inclusion M ↪→ N is an
embedding.

2.2.3 Vector Fields

We now arrive to the definition of a vector field which are smooth maps taking
values in the tangent bundle.

Definition 2.2.35. Let U ⊆M be an open set and π the map from Definition
2.2.30. A vector field X on U is a smooth map X : U → TM |U , s.t. π ◦X = id.
We denote by Ω0(U, TM) the set of all vector fields on U . In other words a
vector field defines a smoothly varying family of vectors over the open set U .

Remark 2.2.36. Setting ∂
∂xi

(x) := ∂
∂xi

∣∣
x

defines a vector field on U denoted
∂
∂xi

. We can then write any vector field X in local coordinates as X(x) =∑
iXi(x) ∂

∂xi

∣∣
x

with Xi ∈ C∞(U).
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Remark 2.2.37. The index 0 in the notation Ω0(U, TM) will make sense later
on when we discuss differential forms. We will also understand that vector fields
are actually sections of the tangent bundle.

Definition 2.2.38. Let f ∈ C∞(U). Then for any x ∈ U and any vector field
X on U we can define a function X.f : U → R with X.f(x) := X(x)f , which is
well defined since X(x) ∈ TxM is a derivation on C∞(M). In local coordinates
we can write X.f(x) =

∑
iXi(x) ∂f∂xi

(x), with the same Xi ∈ C∞(U) as in
Remark 2.2.49.

Proposition 2.2.39. The map X.f is smooth.

The space of sections of the tangent bundle, i.e. vector fields, carry an
additional structure, the Lie bracket.

Definition 2.2.40. A Lie algebra is a vector space g endowed with an alter-
nating bilinear operation called the Lie bracket

g× g→ g, (v, w) 7→ [v, w],

which satisfies the Jacobi identity

[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0, ∀u, v, w ∈ g.

Proposition 2.2.41. The space of vector fields Ω0(U, TM) equipped with the
Lie bracket defined by [X,Y ] = X ◦ Y − Y ◦X, ∀X,Y ∈ Ω0(U, TM) is a real
Lie algebra. This Lie bracket is called the commutator.

Remark 2.2.42. With Definition 2.2.38 we can write ([X,Y ]).f for any X,Y ∈
Ω0(U, TM) and f ∈ C∞(U). Explicitly we can write ([X,Y ]).f = X.(Y.f) −
Y.(X.f) and one can show that this is still a derivation.

2.2.4 Cotangent Spaces

To the tangent space we can associate its dual vector space: the cotangent
space. Cotangent spaces can be assembled to cotangent bundle in the same way
as tangent bundle.

Definition 2.2.43. The cotangent space of M at x is the dual vector space
(TxM)∗ = HomR(TxM,R). We will denote it by T ∗xM .

Definition 2.2.44. Let U be a neighbourhood of x and let f ∈ C∞(U). Then f
defines an element df |x ∈ T ∗xM , the differential of f at x, by df |x(v) := v(f), v ∈
TxM .

Proposition 2.2.45. Suppose σ is a chart defined on U and xi the local coor-
dinates about x in the chart σ. The set (dxi|x)i=1,...,n is a basis of T ∗xM .

Proof. The set (dxi|x)i=1,...,n is the dual basis to ( ∂
∂xi
|x)i=1,...,n since

dxj |x
(

∂

∂xi

∣∣∣
x

)
=

∂

∂xi

∣∣∣
x
(xj) = δji .

13



Just as before for TM one can show that the disjoint union of cotangent
spaces can be equipped with a smooth structure.

Proposition 2.2.46. Let M be a smooth manifold with the smooth atlas Σ =
(Ua, σa) with the chart σa : Ua → Oa ⊆ Rn. Consider the disjoint union of the
tangent spaces:

T ∗M :=
⊔
x∈M

T ∗xM.

The space T ∗M can be endowed with the structure of a smooth manifold induced
by the smooth structure of M .

Definition 2.2.47. The cotangent bundle is the disjoint union of tangent spaces
T ∗M endowed with the structure of a smooth manifold from Proposition 2.2.46.
We denote an element of T ∗M as a pair (x, λ) to indicate that λ ∈ T ∗xM . There
is a smooth map π : T ∗M →M given by π(x, λ) = x.

Analogous to the Definition of vector fields we can define differential 1-forms.
We will define later on differential r-forms in greater generality.

Definition 2.2.48. Let U ⊆M be an open set and π the map from Definition
2.2.47. A differential 1-form α on U is a smooth map α : U → T ∗M |U , s.t.
π ◦ α = id. We denote by Ω0(U, T ∗M) the set of differential 1-forms on U .
In other words a differential 1-form defines a smoothly varying family of dual
vectors over the openset U .

Remark 2.2.49. Setting dxi(x) := dxi|x defines a differential 1-form on U
denoted dxi. We can then write any differential 1-form α in local coordinates as
α(x) =

∑
i αi(x)dxi|x with αi ∈ C∞(U). In particular, for a smooth function

f ∈ C∞(U) setting df(x) := df |x defines a differential 1-form on U and in local
coordinates we can write it as df(x) =

∑
i
∂f
∂xi

(x)dxi|x.

2.2.5 Distributions

Definition 2.2.50. Let M be a smooth manifold of dimension n and let k ≤ n
an integer. A smooth distribution ∆ on M of dimension k is a choice of k-
dimensional linear subspaces ∆x ⊆ TxM for each x ∈ M that vary smoothly
with x in the following sense. For each point x0 ∈M there exists a neighbour-
hood U of x0 and k vector fields X1, .., Xk ∈ Ω0(U, TM) such that

∆x = spanR{X1(x), ..., Xk(x)}, ∀x ∈ U.

Distributions are going to be used to define connections on principal bundles.
The following definitions are going to be particularly relevant when defining
polarisations.

Definition 2.2.51. Let ∆ be a k-dimensional distribution on M , and suppose
(L, ı) is a k-dimensional immersed submanifold. We say that L is an integral
manifold of ∆ if

Dı(x)[TxL] = ∆x, ∀x ∈ L.

14



Definition 2.2.52. A distribution ∆ is said to be integrable if ∀x ∈ M there
exists (L, ı) such that L is an integral manifold of ∆.

Definition 2.2.53. Let ∆ be a distribution on M and let X be a vector field
on M . We say that X belongs to ∆ (or that it is tangent to ∆) if X(x) ∈ ∆x

for each x ∈M .

Definition 2.2.54. We denote with [·, ·] the Lie bracket from Definition 2.2.41.
A distribution ∆ is said to be involutive if [X,Y ] belongs to ∆ whenever X and
Y belong to ∆. Thus an involutive distribution is one for which the space of
vector fields belonging to it forms a Lie subablgebra of Ω0(M,TM).

Proposition 2.2.55. Integrable Distributions are involutive.

The converse is false in general but it is true in the constant rank case as
the following theorem shows.

Theorem 2.2.56. (Frobenius Theorem) Let ∆ be an integrable distribution
on M . If ∆ has constant rank (equivalently one could say that ∆ is a vector
subbundle of the tangent bundle, c.f. section 2.4) and is involutive then ∆ is
integrable.

Definition 2.2.57. A k-dimensional foliation F of M is a partition into k-
dimensional connected immersed submanifolds, called leaves of the foliation,
such that:

1. The collection of tangent spaces to the leaves defines a distribution ∆ on
M .

2. Any connected integral manifold of ∆ is contained in some leaf of F .

Each leaf L of F is a maximal connected integral manifold of ∆.

We now understand that foliations F are equivalent to integrable distribu-
tions. Indeed, by definition a foliation defines an integrable distribution and
given a distribution one can construct a foliation by defining its leaves as being
the maximal connected integral manifolds of the distribution ∆.

15



2.3 Lie Groups

In this section, we define Lie groups, which are smooth manifolds with group
structure. We also discuss representations and we define especially the adjoint
representation of a Lie group.

Definition 2.3.1. A Lie group G is a smooth manifold endowed with a group
structure in the following sense. It fulfils the properties that the group multi-
plication G × G → G, m(a, b) = ab and group inversion G → G, i(a) = a−1

are both smooth maps, where G×G is given the natural smooth structure of a
direct product.

Proposition 2.3.2. Let G be a Lie group. The tangent space to G at the
identity element TeG is a Lie algebra in the sense of Definition 2.2.40. We
denote this Lie algebra with g := TeG.

Example 2.3.3. We give here a few of the most important examples of Lie
groups for our purpose.

1. The set of invertible n× n matrices GLn(R) is a Lie group under matrix
multiplication. The Lie algebra associated to it is gl(n), the space of all
square matrices Mat(n) with the Lie bracket given by the commutator.

2. The subset of orthogonal Matrices O(n) ⊆ GLn(R) is defined as O(n) =
{A ∈ GLn(R) | AAT = In}, where In is the identity element. The subset
O(n) is closed in GLn(R) and is (therefore) a Lie subgroup (see closed
subgroup theorem, Theorem 9.11 in [1]). The Lie algebra o(n) of O(n)
can be identified by {A ∈ gl(n) | A + AT = 0}, where AT denotes the
transpose of A. This result comes from the implicit function theorem (see
[1]). Let Sym(n) be the subset of symmetric matrices. If we define a map
φ : Mat(n) → Sym(n), A 7→ ATA − In, its derivative Dφ is surjective at
the identity matrix In: Dφ(In)[A] = A+AT . Using the implicit function
theorem, it follows that TInO(n) = kerDφ(e). In other words o(n) is
the Lie Algebra of antisymmetric matrices with the commutator as Lie
bracket.

3. The subset of special unitary matrices SU(2) ⊆ GL2(C) is defined as
SU(2) = {A ∈ GL2(C) | AA† = In, det(A) = 1}, where A† := ĀT the
conjugate transpose of A. It is a Lie subgroup of GL2(C) because it is
also closed in GL2(C). One can describe the Lie algebra of SU(2) with
the same method as above. The Lie algebra su(2) can be identified by
{A ∈ GL2(C) | A† + A = 0, tr(A) = 0}. In other words su(2) is the Lie
algebra of skew-Hermitian traceless matrices with the commutator as Lie
bracket.

We can now discuss representations of Lie groups and Lie algebras.

Definition 2.3.4. A representation of a group G on a finite vector space V is a
continuous homomorphism ρ : G→ GL(V ). We denote a representation by the
tuple (ρ, V ).
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This definition holds in particular if G is a Lie group.

Definition 2.3.5. A representation of a Lie algebra g on a finite vector space
V is a continuous homomorphism ρ : g→ gl(V ).

The adjoint representation is the representation of a Lie group G on its Lie
algebra.

Definition 2.3.6. The map Ad: G → GL(g),
(
Ad(g)

)
(x) = gxg−1 is a repre-

sentation of the Lie group G. We call it the adjoint representation of G.

A particularly important notion for a representation is irreducibility that we
now define.

Definition 2.3.7. An invariant subspace of a representation (ρ, V ) is a subspace
W ⊆ V given such that ρ(g)W ⊆ W for all g ∈ G. A representation (ρ, V ) is
irreducible if there are no invariant subspace other than V and {0}.
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2.4 Bundles

In this chapter we define fibre bundles and we then specialize to vector/line
bundles and principal bundles. We then introduce associated bundles, which
are vector bundles associated to principal bundles. We then discuss sections of
vector bundles and we finally discuss Hermitian vector bundles.

2.4.1 Fibre Bundles

Definition 2.4.1. Let E, M and F be smooth manifolds and suppose π :
E → M is a smooth surjective map. We say that the tuple (π,E,M,F ) is
a fibre bundle over M with fibre F if for every point x ∈ M there exists a
neighbourhood U of x and a smooth map α : π−1(U)→ F such that:

ϕ := (π, α) : π−1(U)→ U × F (2.1)

is a diffeomorphism. We call ϕ a local trivialisation, (U,ϕ) a system of local
trivialisations and α a bundle chart. We call E the total space of the bundle,
M the base space and F the fibre. The collection of bundle charts is called a
bundle atlas.

Definition 2.4.2. Given a fibre bundle E over M with fibre F we set Ex :=
π−1(x) for x ∈M and call Ex the fibre over x.

Lemma 2.4.3. Let π : E → M be a fibre bundle with fibre F . Then π is
a submersion, and moreover each fibre Ex is an embedded submanifold of E
which is diffeomorphic to F .

Proof (Sketch). Let (U,ϕ) be a system of local trivialisations. The tangent
map Dπ is a composition of submersions, namely ϕ and the first projection pr1.
Using the implicit function theorem, Ex is an embedded submanifold. Finally
the composition of the second projection pr2 after (π, α) is a diffeomorphism
from Ex to F .

Definition 2.4.4. Let α : π−1(Uα) → F and β : π−1(Uβ) → F be two bundle
charts. We define the transition function:

ραβ : Uα ∩ Uβ → Diff(F ), ραβ(x) := α|Ex ◦ β|−1
Ex

Thus if p ∈ π−1(Uα ∩ Uβ) one has:

α(p) =
[
ραβ(π(p))

]
(β(p)).

If γ : π−1(Uγ) → F is another bundle chart then the cocycle condition is satis-
fied, namely:

ραγ(x) = ραβ ◦ ρβγ(x), ∀x ∈ Uα ∩ Uβ ∩ Uγ
Definition 2.4.5. Let F be a smooth manifold and suppose we are given a left
action µ : G × F → F of a Lie group G on F . We say that µ is effective if
µa = IdF implies a = eG.
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Definition 2.4.6. Suppose π : E → M is a fibre bundle with fibre F , and
suppose G is a Lie group acting effectively from the left on F . We say that two
bundle charts α : π−1(U) → F and β : π−1(U) → F are (G,µ)-compatible if
there exists a smooth map ρ̃αβ : U ∩ V → G such that(

ραβ(x)
)

(z) = µ(ρ̃αβ(x), z), ∀x ∈ U ∩ V,∀z ∈ F

We say that the fibre bundle E has structure group G if all the charts of the
bundle atlas are (G,µ)-compatible. We say that the bundle atlas is a (G,µ)-
bundle atlas.

Remark 2.4.7. In particular, if F = Rk is a vector space and G ⊆ GLk(R) is
a Lie group then the action will always be taken to be the standard one. Thus
we write that the bundle charts are G-compatible omitting the action µ.

Example 2.4.8. We now give an example of fibre bundle. Let M denote the
smooth manifold CP 1 = C2\{0}/C×, E denote the smooth manifold C2\{0}
and F the smooth manifold C×. One can check that π : E → M canonically
defined is a fibre bundle with fibre F .

Definition 2.4.9. Let πi : Ei →Mi, i ∈ {1, 2} denote two fibre bundles. Sup-
pose we are given two smooth maps Φ: E1 → E2 and φ : M1 → M2. We say
that Φ is a vector bundle morphism along φ if the restriction to each E1|x is
a linear map from E1|x to E2|φ(x). In other words Φ is fibre-preserving. If
Φ maps each fibre E1|x isomorphically onto E2|φ(x) then Φ is called a vector
bundle isomorphism along φ. If φ is the identity map id: M → M we call Φ a
fibre bundle homorphism.

2.4.2 Vector Bundles

We now move on to vector bundles which are special types of fibre bundles.
Vector bundles are going to be central in the geometric quantisation process we
are going to follow, since we are going to construct the quantum Hilbert phase
space as a space of sections of vector bundles.

Definition 2.4.10. A vector bundle of rank k is a fibre bundle π : E → M
whose fibre is F = Rk and whose structure group G ⊆ GLk(R) is a Lie subgroup.
A line bundle is a vector bundle of rank 1.

For clarity we rewrite the definition of a fibre bundle in the case of a vector
bundle.

Definition 2.4.11. Let π : E → M be a surjective map between two smooth
manifolds and set Ex := π−1(x). We say that E is a vector bundle of rank k if
each Ex has the structure of a k-dimensional vector space, and any x ∈M has
a neighbourhood U together with a smooth map α : π−1(U)→ Rk such that:

1. ϕ := (π, α) : π−1(U)→ U × Rk is a diffeomorphism
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2. α|Ex : Ex → Rk is an isomorphism of vector spaces.

The change of charts is given by GLk(R) matrices. The bundle charts are
GLk(R)-compatible.

Example 2.4.12. The trivial rank k vector bundle over M is defined by E :=
M × F = M × Rk with π : M × Rk →M the first projection pr1. Then U can
be M and we define α : M × Rk → Rk to be the second projection pr2. The
transition map is then the Identity matrix.

Definition 2.4.13. A vector bundle is said to be trivialisable if it is isomorphic
to the rank k trivial bundle.

Example 2.4.14. Another relevant example is the tangent bundle from Defi-
nition 2.2.30. Indeed, we can define π : TM → M as a vector bundle of rank
n, where n is the dimension of M . For σα : Uα → Oα a chart on M with local
coordinates xi we can define bundle charts with α : π−1(Uα) → Rn, α(x, v) =∑
i dxi|x(v)ei, where ei is the canonical basis of Rn. For σβ : Uβ → Oβ , the

transition map from Definition 2.4.4 becomes ραβ = D(σα ◦ σ−1
β )(σβ(x)) ∈

GLn(R) ⊆ Diff(Rn).

Example 2.4.15. Let φ : M → N be a smooth map and suppose π : E → N
is a fibre bundle. Then M × E → M is a trivial bundle. The pullback bundle
φ∗E is defined as follows. We define

φ∗E := {(x, p) ∈M × E | φ(x) = π(p)},

with projections pr1 : φ∗E →M and pr2 : φ∗E → E. The fibre φ∗(E) over x ∈
M is {x}×Eφ(x) which is diffeomorphic to Eφ(x) under pr2. If α : π−1(U)→ F

is a bundle chart for E then α ◦ pr2 : pr−1
1 (φ−1(U)) → F is a bundle chart for

φ∗E. Thus φ∗E is a fibre bundle. Moreover, one can show that if (E,M,F,G)
is a vector bundle then the pullback bundle is a vector bundle with structure
group a Lie subgroup of G.

We will now state the Metatheorem which gives a taste as to why vector
bundles are so important.

Theorem 2.4.16. (Metatheorem) Any construction we can perform with vector
spaces without choosing a basis, we can also perform with vector bundles.

Example 2.4.17. A few examples for the Metatheorem are the following: if
πE,F : E,F → M are vector bundles of dimension n and m respectively then
we can form another vector bundle E∗ → M called the dual bundle, whose
fibre over x is defined as (E∗)x := (Ex)∗. We can define a tensor vector bundle
E ⊗ F and an exterior product vector bundle E ∧ F . Finally, We can also
construct a direct sum vector bundle E ⊕ F , where (E ⊕ F )|x = (E|x ⊕ F |x).
Let us specify a bit the vector bundle structure of E ⊕ F . The other example’s
structures are very similar. Choose the system of local trivialisations for E as
being {(Ua, φEa )}a∈I and for F as being {(Ua, φFa )}a∈I for some index set I.
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Then one can check that πE⊕F : E ⊕ F → M, (pE , pF ) 7→ (πE(pE), πF (pF )) is
a vector bundle with the system of local trivialisations {(Ua, (φEa , φFa ))}a∈I and
transition maps ρE⊕Fα,β : Uα ∩ Uβ → GLm+n(R) of the form

ρE⊕Fα,β =

(
ρEα,β 0

0 ρFα,β

)
.

2.4.3 Principal Bundles

We will now look at another very important type of fibre bundle: principal
bundles. Principal bundles are related to vector bundles, because any principal
bundle we can associate a vector bundle and vice versa. There is actually a one-
to-one correspondence between vector bundles of rank k over M and principal
GLk(R)-bundles.

Definition 2.4.18. A right action of a Lie group G on a smooth manifold
M is a smooth map µ : M × G → M, (x, a) 7→ x · a satisfying µ(x, ab) =
µ(µ(x, a), b), µ(x, eG) = x for all a, b ∈ G and x ∈M . The action is

• free if µ(x, a) = x for some x ∈ M and a ∈ G implies a = e. In words,
an action is free if a ∈ G, µ(·, a) : M → M has a fixpoint if and only if
a = eG.

• transitive if for any x, y ∈M there exists an a ∈ G so that µ(x, a) = y.

For all principal bundles we will use a different notation for a right action
µ, as defined above. We will instead define a right action as being the map
· : (p, a) 7→ p · a for a ∈ G.

Definition 2.4.19. Let π : P → M be a fibre bundle with fibre a Lie group
G. Assume that there exists a free fibre-preserving right action of G on P and
a bundle atlas for P with the property that each bundle chart α : π−1(U)→ G
is G-equivariant. The G-equivariance property means that:

α(p · a) = α(p)a, ∀p ∈ π−1(U), ∀a ∈ G

Then we say that P is a principal bundle over M with group G or a G-principal
bundle.

Let us fix a principal G-bundle P for the rest of this section.

Lemma 2.4.20. The structure group of P as a fibre bundle is G itself, where
we let G act on itself via left translation.

Definition 2.4.21. Given the right action from Definition 2.4.18. The G-orbit
of p ∈ P is the set {p · a | a ∈ G}. We denote the G-orbit of p with p ·G.

Lemma 2.4.22. The fibres of π : P →M are the orbits for the action of G on
P and hence M is diffeomorphic to the quotient space of P/G. In particular, G
acts transitively on the fibres.
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Proof (Sketch). Let us first prove that the fibre over x is contained in a G-orbit
for all x. This implies that the action is transitive on fibres. Let x ∈ M ,
p, q ∈ Px and α : π−1(U)→ G be a bundle chart over a neighbourhood U of x.
Denote a := α(p) and b := α(q). Then we have

(π, α)(p · a−1b)
(1)
= (x, α(p)a−1b) = (x, b) = (π, α)(q)

where we used in (1) that G is fibre-preserving and α is G-equivariant. Hence
q = p · a−1b, since (π, α) is a diffeomorphism. So we have shown that Px ⊆
p ·G, ∀p ∈ G. Conversely, p ·G ⊆ Px for π(p) = x follows from the fact that G
is fibre preserving. Thus Px = p ·G.
Now consider the quotient space P/G = {p·G | p ∈ P}. One can show that P/G
has the structure of a smooth manifold and the natural bijection p · G → π(p)
is a diffeomorphism.

2.4.4 Frame Bundles and Associated Bundles

We now define frame bundles. This construction shows one direction of the
one-to-one correspondence between rank k vector bundles and principal GLk(R)-
bundle.

Definition 2.4.23. Let π : E →M be a vector bundle. A frame at x for E is
an isomorphism Rk → Ex. We denote the set of frames at x with Fr(Ex).

Remark 2.4.24. One can show that the set of frame Fr(Ex) from Definition
2.4.23 is equivalent to the set of all ordered basis of Ex.

Definition 2.4.25. Consider the disjoint union of the frames:

Fr(E) :=
⊔
x∈M

Fr(Ex)

with π̂ : Fr(E)→M the map that sends Fr(Ex) to x. The frame bundle is the
disjoint union of the frames Fr(E) equipped with the structure of a GLk(R)-
bundle over M .

Frame bundles are the principal GLk(R)-bundles associated to vector bun-
dles of rank k.

Remark 2.4.26. Intuitively, Fr(E) is a GLk(R)-bundle because there is exactly
one element of GLk(R) to change basis. Therefore each set of frame Fr(Ex) is
in bijection with GLk(R) up to choosing a point.

Associated bundles give the other direction of the one-to-one correspondence
between vector bundles of rank k and principal GLk(R)-bundles. It associates
vector bundles to principal bundles.
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Definition 2.4.27. Let π : P → M be a principal G-bundle and assume G
acts effectively on another manifold F on the left via ρ : G×F → F . Define an
equivalence relation ∼ on P × F by:

(p · a, v) ∼ (p, ρ(a, v)), p ∈ P, a ∈ G, v ∈ F.

Define P ×G F to be the quotient space (P × F )/ ∼. Writing [p, v] for the
equivalence class of (p, v), we define a map π̃ : P ×GF →M by setting π̃[p, v] =
π(p).

Proposition 2.4.28. The tuple (π̃, P ×G F,M,F ) is a fibre bundle over M
with fibre F and structure group G.

Proposition 2.4.29. Let π : P → M be a principal G-bundle and V be a
vector space. Suppose ρ : G→ GL(V ) is a smooth effective representation of G
on V . Then (π̃, P ×GV,M, V ) is a vector bundle over M according to Definition
2.4.27. Additionally, for any p ∈ P , the map Lp : V → (P ×GV )|π(p), v 7→ [p, v]
is an isomorphism. Thus for x ∈ M the vector space structure on (P ×G V )|x
is given by

[p, v] + r[p, w] = Lp(v + rw) = [p, v + rw].

We call P ×G V the associated vector bundle to P over M .

Remark 2.4.30. If we take ρ to be the tautological representation of GLk(R)
on Rk then the association P → P ×GL(k) Rk defines an inverse to the frame
bundle construction. Note that principal bundles are more general than vector
bundles because there exist Lie groups which are not matrix group.

2.4.5 Sections of Bundles

Now that we understand fibre bundles, vector bundles and principal bundles,
we can define smooth maps from the base space to the total space of a fibre
bundle.

Definition 2.4.31. Let π : E →M be a fibre bundle. A global section of E is
a smooth map s : M → E such that π ◦ s = IdM , i.e. s(x) ∈ Ex, ∀x ∈M . The
set of global sections is denoted Ω0(M,E). A local section of E on an open set
U ⊆ M is a section of the bundle E|U → U of E. We denote by Ω0(U,E) the
set of all local sections over U .

As mentioned earlier the quantum Hilbert phase space that we are going to
construct will be a space of sections on vector bundles.

Remark 2.4.32. The notation Ω0(M,E) should ring a bell. Recall that the
set of all vector fields on U ⊆ M was noted Ω0(U, TM). This is sensible be-
cause vector fields are by definition sections of the tangent bundle (cf. Example
2.4.14).
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Example 2.4.33. In the case of the trivial bundle L = M × R the space
Ω0(M,L) is naturally isomorphic to the space C∞(M). We can indeed define
a map C∞(M) → Ω0(M,L), f 7→ fs1 where s1 ∈ Ω0(M,L) is defined via
s1(x) := (x, 1), x ∈ M . It is naturally an isomorphism since for any x ∈ M
we have fs1(x) = f(x)s1(x) = f(x)(x, 1) = (x, f(x)) and any section is of this
form. We call the smooth function f ∈ C∞(M) a coefficient function.

Proposition 2.4.34. The vector bundle π : L→M is trivialisable if and only
if it admits a global nowhere vanishing section of L.

Example 2.4.35. In case of a non-necessarily trivial line bundle L we have an
open cover {Uj}j∈J of M with local trivialisations ϕj : L|Uj → Uj ×R. We can

then define a local section sj on Uj by setting sj(x) := ϕ−1
j (x, 1), x ∈ Uj with

the property ϕj(λsj(x)) = (x, λ) ∈ Uj × R. We can then define on Uj ∩ Uk a
transition function gjk : Uj ∩ Uk → R× = GL1(R) for sections via sj = gkjsk
satisfying the following cocycle condition:

1. gjj = 1 on Uj

2. gjkgkj = 1 on Uj ∩ Uk

3. gjkgklglj = 1 on Ujkl = Uj ∩ Uk ∩ Ul

Proposition 2.4.36. Let L be a line bundle with an open cover {Uj}j∈J of M
with local trivialisations ϕj : L|Uj

→ Uj × R. Define {sj}j∈J and {gjk}j,k∈J as
in Example 2.4.35. For each s ∈ Ω0(M,L) there is a collection {fj}j∈J where
each fj ∈ C∞(Uj) satisfies:

1. s|Uj = fjsj , j ∈ J

2. fk = gkjfj , k, j ∈ J

Conversely every collection {fj}j∈J , fj ∈ C∞(Uj) satisfying fk = gkjfj , k, j ∈
J yields a global section s ∈ Ω0(M,L) with s|Uj

= fjsj , j ∈ J .

Definition 2.4.37. Let π : E → N be a fibre bundle and φ : M → N be a
smooth map. A section of E along φ is a smooth map s : M → E such that
s(x) ∈ Eφ(x). We denote the space of sections by Ω0

φ(M,E). For U ⊆M , local
sections along φ are smooth maps s : U → E|U . We denote the space of local
sections by Ω0

φ(U,E).

Definition 2.4.38. Let π : E → M be a vector bundle of rank k and let
U ⊆ M be open. A local frame for E over U is a collection (e1, ..., ek) of
sections ei ∈ Ω0(U,E) such that (e1(x), ..., ek(x)) is a basis of the space Ex for
each x ∈ U . If U = M the local frame is called a global frame.

Remark 2.4.39. For a line bundle a frame is a nowhere vanishing section.

Remark 2.4.40. If (e1, ..., ek) is a local frame for E over U then any section
s : U → E can be written as s = aiei, for functions ai : U → R. Giving a local
frame is the same as giving a local trivialisation.
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Finally we define a very important section of the vector bundle (E ⊗E)∗, a
Riemannian metric.

Definition 2.4.41. Let π : E → M be a vector bundle. Recall from the
Metatheorem that (E⊗E) is another vector bundle with the structure inherited
from E. A Riemannian metric of E is a section m ∈ Ω0(M, (E ⊗E)∗) with the
property that for all x ∈ M , the element mx ∈ E∗x ⊗ E∗x ∼= (E ⊗ E)∗|x is an
inner product on the vector space Ex, i.e. a bilinear, symmetric, positive definite
form. We call the pair (E,m) a Riemannian vector bundle.

2.4.6 Hermitian and Holomorphic Vector Bundles

We first define complex vector and line bundles and then specify to Hermitian
vector bundles and holomorphic vector bundles.

Definition 2.4.42. A complex vector bundle is a vector bundle whose fibres
are complex vector spaces. In other words we can define a rank k complex
vector bundle by taking Definition 2.4.11 and replacing every R with C. Thus
the transition functions take value in GLk(C) matrices.

Remark 2.4.43. A rank k complex vector bundle is a rank 2k real vector
bundle but not conversely, because of the choice of transition maps. Indeed
GLk(C) is a subgroup of GL2k(R).

Remark 2.4.44. Let E be a complex vector bundle. The conjugate vector
bundle E has the same complex vector bundle structure as E only that complex
numbers will act by their complex conjugate on E. This construction is allowed
by the Metathorem since it is basis free.

Just as we defined smooth family of Riemannian metrics, we will define
Hermitian metrics.

Definition 2.4.45. Let π : E →M be a complex vector bundle. A Hermitian
metric of E is a section h ∈ Ω0(M, (E ⊗ E)∗) with the property that for all

x ∈ M , the element hx ∈ E∗x ⊗ E
∗
x = (E ⊗ E)∗|x is a Hermitian inner product

on the vector space Ex. In other words a Hermitian metric is a smoothly
varying positive definite sesquilinear Hermitian form on each fibre. We call the
pair (E, h) a Hermitian vector bundle.

Example 2.4.46. In the case of the trivial complex line bundle L = M ×C we
define a Hermitian metric h0 by setting:

h0((a, z), (a,w)) := zw, z, w ∈ C, a ∈M.

We call h0 the constant Hermitian metric, which is sensible since h0 is not
varying over L. One can prove that any other Hermitian metric h on L is given
by a smooth function h̃ : M → R>0 by

h((a, z), (a,w)) := h̃(a) h0((a, z), (a,w)) = h̃(a)zw, ∀a ∈M.
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Proposition 2.4.47. Every complex vector bundle admits a Hermitian metric.

Remark 2.4.48. The proof of Proposition 2.4.47 is given by the application of
partition of unity, which can be found in [1], Definition 3.12.

Example 2.4.49. Let (L, h) be a Hermitian line bundle. We can associate to
it the circle bundle L1 →M , where

L1 := {l ∈ L | h(l, l) = 1}

This is a principal bundle with the circle group S1 = {z ∈ C | |z| = 1} as its
structure group. Conversely if P → M is a principal S1-bundle and ρ : S1 →
C× = GL1(C) is the tautological representation ρ(z) : C → C, w 7→ zw, then
the associated vector bundle L = P×ρC is a line bundle where S1 acts by scalar
multiplication. The Hermitian metric h on L is then given by:

h([x, z], [y, w]) := zw, x, y ∈ P, z, w ∈ C

We will see later on what it means for a connection to be compatible with a
Hermitian metric. This will be central in the prequantisation process. Finally
we define holomorphic vector bundles.

Definition 2.4.50. Let U ⊆ Cn be an open subset. A complex valued function
f : U → C is holomorphic if it satisfies the Cauchy–Riemann equations:

∂f

∂zj
= 0, ∀j ∈ {1, ..., n}

where zj = xj + iyj denotes the standard coordinates on C ⊆ Cn and ∂
∂zj

=

1√
2

(
∂
∂xj

+ i ∂
∂yj

)
. We denote the space of holomorphic functions on U with OU .

Definition 2.4.51. Let U ⊆ Cn be an open subset. A function f : U → Cm is
holomorphic if all of its components are holomorphic.

Definition 2.4.52. A complex manifold M of complex dimension n is a smooth
manifold of dimension 2n such that there exists an atlas of local charts

σa : Ua → Oa ⊆ Cn, a ∈ A

where {Ua | a ∈ A} is an open cover of M , Oa ⊆ Cn is open, and the transition
maps:

σb ◦ σ−1
a : σa(Ua ∩ Ub)→ σb(Ua ∩ Ub)

are biholomorphic, i.e. σb ◦ σ−1
a and σa ◦ σ−1

b are holomorphic.

Remark 2.4.53. A complex manifold of dimension k is a real manifold of
dimension 2k but not conversely since holomorphic maps are smooth but not
conversely.
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Definition 2.4.54. Let φ : M → N a continuous map between two complex
manifolds. Let x ∈ M be a point with Ua a neighbourhood of x and Ub a
neighbourhood of φ(x). Let σ : Ua → Oa ⊆ CdimC(M) be any chart on M and
τ : Ub → Ob ⊆ CdimC(N) be any chart on N . Then φ is called a holomorphic
map if the composition:

τ ◦ φ ◦ σ−1 : σ(Ua ∩ φ−1(Ub))→ τ(φ(Ua) ∩ Ub)

is holomorphic.

Definition 2.4.55. A complex vector bundle π : E → M of rank n over a
complex manifold M is holomorphic if E is a complex manifold, π : E →M is a
holomorphic map and there exists a system of local trivialisations (Ua, ϕa)a∈A
where the maps:

ϕa : E|Ua
→ Ua × Cn

are biholomorphic.

Similarly to the compatibility of a connection with a Hermitian metric, we
will see that we also need the connection to be compatible with the holomorphic
structure on E.
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2.5 Differential Forms

We first define tensor products and exterior algebras for vector spaces which will
generalise to vector bundles with the Metatheorem. We then define differential
r-forms on M which are sections of the bundle whose total space is the exterior
algebra of the cotangent bundle of M . We then define the exterior derivative
which is an operator acting on differential forms. We finally define bundle val-
ued forms which generalise differential forms.

2.5.1 Tensor Product

For the following let V and W be two vector spaces on a field K ∈ {R,C}.

Definition 2.5.1. Let Free(V ) denote the vector space which has V as a basis.
Therefore Free(V,W ) will denote the vector space which has as basis all the
elements of the form (v, w) where v ∈ V and w ∈ W . Let R(V,W ) denote the
linear subspace of Free(V,W ) generated by the set of all elements of the form

(v1 + v2, w)− (v1, w)− (v2, w), v1, v2 ∈ V, w ∈W
(v, w1 + w2)− (v, w1)− (v, w2), v ∈ V, w1, w2 ∈W

c(v, w)− (cv, w), v ∈ V, w ∈W, c ∈ K
c(v, w)− (v, cw), v ∈ V, w ∈W, c ∈ K

Definition 2.5.2. Let V and W be two vector spaces. Their tensor product
V ⊗W is the vector space defined by Free(V,W )/R(V,W ). The coset in V ⊗W
containing (v, w) is denoted by v ⊗ w. The elements contained in V ⊗W are
therefore of the form

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w, v1, v2 ∈ V, w ∈W
v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2, v ∈ V, w1, w2 ∈W

c(v ⊗ w) = (cv)⊗ w, v ∈ V, w ∈W, c ∈ K
c(v ⊗ w) = v ⊗ (cw), v ∈ V, w ∈W, c ∈ K

Lemma 2.5.3. (Universal Property) Let V, W and U be vector spaces and let
T : V ×W → V ⊗W be the natural bilinear map that sends (v, w) 7→ v ⊗ w.
Suppose B : V × W → U is a bilinear map. Then there is a unique linear
map L : V ⊗ W → U such that B(v, w) = (L ◦ T )(v, w) for all v ∈ V and
w ∈W . Moreover this property uniquely characterizes V ⊗W (up to a canonical
isomorphism).

Corollary 2.5.4. Let V ∗ = Hom(V,R) denote the dual space. Then there is a
natural isomorphism between Hom(V,W ) and V ∗ ⊗W .

Proof. Define B : V ∗ ⊗ W → Hom(V,W ) by B(λ,w)(v) := λ(v) · w. We
then have a unique linear map L : V ⊗ W → Hom(V,W ) by the universal
property. This map is an isomorphism because the inverse of L is given by
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L−1 : Hom(V,W )→ V ∗⊗W, h 7→
∑
i e
i⊗h(ei), where ei is any basis of V and

ei is the dual basis of V ∗.

Example 2.5.5. Let π : E → M be a vector bundle. With Corollary 2.5.4,
we can write L ⊗ L∗ ∼= End(L). Thus, it follows from the Metatheorem that
End(L) defines a vector bundle as well.

Corollary 2.5.6. If (e1, ..., edim(V )) is a basis of V and (e′1, ..., e
′
dim(W )) is a basis

of W then ei ⊗ e′j is a basis for V ⊗W . Thus dim(V ⊗W ) = dim(V ) · dim(W )

Proof. It is clear that any element of V ⊗W can be written as a linear com-
bination of ei ⊗ e′j , because of the bilinearity of the map T defined in Lemma
2.5.3.
For the linear independence we use the same map L as in the proof of Corollary
2.5.4 where we define λ := ej , the jth element of the dual basis of V ∗. Suppose
that the linear combination

∑
k,l αklek ⊗ e′l, αkl ∈ K equals zero. Then by ap-

plying L we get the equation 0 =
∑
kl αkle

j(ek)e′l =
∑
l αjle

′
l. The e′l are linearly

independent since they form a basis of W and therefore αkl = 0, ∀k, l.

Corollary 2.5.7. Let V,W and U be vector spaces then there are natural
isomorphisms V ⊗W ∼= W ⊗ V and (U ⊗ V )⊗W ∼= U ⊗ (V ⊗W ).

Definition 2.5.8. Let r and s be non-negative integers. A tensor of type (r, s)
is an element of

V ⊗ ...⊗ V︸ ︷︷ ︸
r−times

⊗V ∗ ⊗ ...⊗ V ∗︸ ︷︷ ︸
s−times

We denote this vector space by T r,s(V ).

Note that this definition makes sense thanks to Corollary 2.5.7. Additionally
T r,s(V ) is obviously (dim(V ))r+s-dimensional by Corollary 2.5.6.

Remark 2.5.9. Let π : Ei → M be vector bundles for i ∈ {1, 2, 3}. Then the
above Lemma 2.5.3, Corollaries 2.5.4, 2.5.6, 2.5.7 and Definitions 2.5.2, 2.5.8 can
be generalized for vector bundles by replacing V,W,U with E1, E2, E3, thanks
to the Metatheorem 2.4.16.

Remark 2.5.10. The direct sum over all the tensors of type (r, s) defines an
algebra where the product is naturally the tensor product ⊗.

2.5.2 Exterior Algebra

We now define exterior algebras which are, for our purpose, much more inter-
esting than tensor products, because of differential forms.

Definition 2.5.11. Let (R,+, ·) be a ring with additive subgroup (R,+). A
subset I is a left ideal of R if it satisfies the conditions:

1. (I,+) ⊆ (R,+) is a subgroup
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2. r · i ∈ I, for r ∈ R and i ∈ I.

A two sided ideal is a left ideal which is at the same time a right ideal, i.e. the
second condition of the definition above is also satisfied with the product from
the right.

Proposition 2.5.12. If (R,+, ·) is a ring and I is a two sided ideal, then R/I
can be endowed with a ring structure.

Definition 2.5.13. Let T+(V ) denote the subalgebra given by T+(V ) :=⊕
r≥0 T

r,0(V ). Let I(V ) denote the two-sided ideal in T+(V ) generated by
all elements of the form v ⊗ v for v ∈ V . The exterior algebra is defined as the
quotient algebra Λ(V ) := T+(V )/I(V ). We denote the image of v1 ⊗ ...⊗ vr in
Λ(V ) by v1 ∧ ... ∧ vr and call ∧ the product on the quotient, which we call the
wedge product.

Remark 2.5.14. There is a canonical vector space isomorphism:

Λr(V ) ∼= T r,0(v)/Ir(V )

where Ir(V ) := T r,0(V ) ∩ I(V ).

Proposition 2.5.15. The wedge product satisfies the following properties:

1. Let r, s > 0. If v ∈ Λr(V ) and w ∈ Λs(V ) then v ∧ w ∈ Λr+s(V ) and
v ∧ w = (−1)r·sw ∧ v

2. If ρ is a permutation of the set {1, ..., r} and {vi}i∈{1,..,r} in V then
vρ(1) ∧ ... ∧ vρ(r) = sgn(ρ)v1 ∧ ... ∧ vr.

Definition 2.5.16. Let Altr(V,W ) denote the space of alternating r-linear
maps, i.e. multilinear mapsA : V×...×V →W which satisfyA(v1, v2, ..., vr) = 0
if there exist i 6= k such that vi = vk.

Remark 2.5.17. Analog to Definition 2.5.16, one could define alternating maps
as maps A : V ⊗r → R which vanish on Ir(V ).

We will denote Altr(V ) for Altr(V,R).

Proposition 2.5.18. There is a canonical isomorphism between Λr(V ∗) and
Altr(V).

Remark 2.5.19. Analogously to the universal property for tensor products
one can prove that there is a universal property for the exterior algebra by
replacing any tensor product ⊗ by a wedge product ∧ and any bilinear map by
an alternating map in Lemma 2.5.3.

Proposition 2.5.20. Let V be a vector space of dimension k with basis (e1, ..., ek).
Then (ei1 ∧ ... ∧ eir | 1 < i1 < .... < ir < k) is a basis of Λr(V ) and Λr(V ) = 0
for rank r > k. Thus dim(Λr(V )) =

(
k
r

)
.
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2.5.3 Differential forms

Differential forms are extremely important because they can be used to make
sense of integration on oriented compact manifolds. Moreover we will define
symplectic manifolds which are manifolds equipped with a symplectic form.

Definition 2.5.21. Let M be a smooth manifold of dimension n and let 0 ≤ r ≤
n. A differential r-form is a section of the bundle Λr(T ∗M) → M . We denote
the space of differential r-forms by Ωr(M) := Ω0(M,Λr(T ∗M)). If U ⊆ M is
an open subset of M we write Ωr(U) = Ω0(U,Λr(T ∗M)). We denote the space
of differential forms by Ω(M) =

⊕
0≤r≤n Ωr(M).

Remark 2.5.22. Differential 0-forms Ω0(M) are smooth functions.

Theorem 2.5.23. (The Differential Form Criterion)
Let U ⊆ M be an open set. Then there is a canonical identification between
Ωr(U) and alternating C∞(U)-multilinear functions:

Ω0(U, TM)× ...× Ω0(U, TM)︸ ︷︷ ︸
r−times

→ C∞(U)

.

Remark 2.5.24. This is a global version of Proposition 2.5.18. The isomor-
phism from Theorem 2.5.23 is given by the map

φ : Ωr(U)→
(
Ω0(U, TM)⊗r

)∗ ⊗ C∞(U),

ω 7→
(
(X1, ..., Xr) 7→ ω(X1, ..., Xr)

)
.

Recall that
(
Ω0(U, TM)⊗r

)∗ ⊗ C∞(U) ∼= Hom(Ω0(U, TM)⊗r, C∞(U)) from
Corollary 2.5.4.

Definition 2.5.25. If ω ∈ Ωr(M) and θ ∈ Ωs(M) then the wedge product is the
differential form ω∧θ ∈ Ωr+s(M) defined pointwise by (ω∧θ)(x) := ω(x)∧θ(x),
where on the right hand side we use the wedge product from Definition 2.5.13.

Remark 2.5.26. We note that Definition 2.5.25 implies that the wedge product
for differential forms inherits the properties from Proposition 2.5.15.

Proposition 2.5.27. Let σ : U → O be a chart on M . A local frame for
Λr(T ∗M)→M over U is given by (dxi1 ∧ .... ∧ dxir | i1 < ... < ir) and we can
locally write a differential r-form as ω =

∑
i1<...<ir

ωi1...irdxi1 ∧ ...∧ dxir where
ωi1...ir ∈ C∞(U).

We now discuss pullback forms which are going to be central when discussing
connections on principal G-bundles and on associated bundles.

Definition 2.5.28. Let φ : M → N be a smooth map. Given ω ∈ Ωr(N) we
define the pullback form φ∗ω ∈ Ωr(M) by

φ∗ωx(v1, ..., vr) := ωφ(x)(Dφ(x)[v1], ..., Dφ(x)[vr])

This defines a map φ∗ : Ωr(N) → Ωr(M) for all r and thus also a map φ∗ :
Ω(N)→ Ω(M).
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Lemma 2.5.29. If φ : M → N is a smooth map and ω, θ ∈ Ω(N) then

φ∗(ω ∧ θ) = φ∗(ω) ∧ φ∗(θ),

i.e. φ∗ is an algebra homomorphism.

We now give an axiomatic definition of the exterior derivative which gives
us a way to derive the differential forms.

Definition 2.5.30. The exterior derivative is the unique R-linear map d : Ω(M)→
Ω(M) such that the following properties are satisfied

1. df is the differential of f , for smooth functions f .

2. d2 = 0

3. d(α ∧ β) = dα ∧ β + (−1)kl(α ∧ dβ), for α ∈ Ωk(M) and β ∈ Ωl(M).

Remark 2.5.31. The exterior derivative d sends k-forms to k + 1-forms. We
note that this implies that the exterior derivative sends n-forms to zero because
of the dimension formula from Proposition 2.5.20.

Definition 2.5.32. A differential form ω is said to be closed if dω = 0 and it is
said to be exact if ω = dθ for some θ another differential form. In other words
closed forms are the kernel of the exterior derivative and exact forms are the
image of the exterior derivative.

Note that it follows directly from Definition 2.5.30 that an exact form is also
closed.

2.5.4 Bundle Valued Forms

We now generalise differential forms by letting them take values in a vector
space or a vector bundle. We first define vector valued forms.

Definition 2.5.33. Let W be a vector space. A differential r-form on M with
values in W , or a W -valued form, is a smooth section of the bundle Λr(T ∗M)⊗
W →M . We denote the space of W -valued r-forms by

Ωr(M,W ) := Ω0(M,Λr(T ∗M)⊗W ).

Remark 2.5.34. This is indeed the good notion for a differential taking values
in W . Let ω ∈ Ωr(M,W ) and x ∈ M . Then we have ωx ∈ Λr(T ∗xM) ⊗
W ∼=

(
Λr(TxM)

)∗
⊗W . By Corollary 2.5.4

(
Λr(TxM)

)∗
⊗W is isomorphic to

Hom(Λr(TxM),W ), hence ωx ∈ Altr(TxM,W ) by the universal property.
In a local trivialisation we can write ω as

ωx(v1, ..., vr) =

k∑
i=1

ωix(v1, ..., vr)ei
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where v1, ..., vr ∈ TxM , (e1, ..., ek) a basis of W and ωix an alternating R-linear
map. The ωix are differential r-forms on M and so we can alternatively write
ω =

∑
i ωi ⊗ ei.

Therefore, almost everything showed in Subsection 2.5.3 can be carried on to
vector-valued forms. Theorem 2.5.36 is an example of this.

Example 2.5.35. The special case where W = C in Definition 2.5.33 is very
important for complex geometry.

Theorem 2.5.36. (The Vector Valued Form Criterion) Let W be a vector
space. Then there is a canonical isomorphism between Ωr(M,W ) and alternat-
ing C∞(M)-multilinear functions

Ω0(M,TM)× ...× Ω0(M,TM)︸ ︷︷ ︸
r−times

→ C∞(M,W ).

Definition 2.5.37. Suppose W1,W2, Z are vector spaces and assume we have
a bilinear map β : W1 ×W2 → Z. Let ω ∈ Ωr(M,W1), θ ∈ Ωs(M,W2) and
v1, ..., vr+s ∈ TxM . Then we write:

(ωx ∧β θx)(v1, ..., vr+s) :=

1

r!s!

∑
ρ∈Gr+s

sgn(ρ)β(ω(vρ(1), ..., vρ(r)), θ(vρ(r+1), ..., vρ(r+s))),

where Gr+s ⊆ Σr+s is the subgroup of (r, s)-shuffles within the symmetric group
of permutations of its objects. An (r, s)-shuffle ρ ∈ Gr+s is a permutation such
that ρ(1) < ... < ρ(r) and ρ(r + 1) < ... < ρ(r + s).

Example 2.5.38. Let g be a Lie algebra. Then we can take the bilinear map
β to be the Lie bracket [·, ·] of g. Given ω ∈ Ωr(M, g) and θ ∈ Ωs(M, g), we will
use the notation [ω, θ] := ω∧[·,·] θ and one can show that [ω, θ] = (−1)rs+1[θ, ω].

Now bundle valued forms can be defined analogously.

Definition 2.5.39. Let π : E →M be a vector bundle. A differential r-form on
M with values in E, or E-valued form, is a section of the bundle Λr(T ∗M)⊗E →
M . We denote the space of E-valued forms by

Ωr(M,E) := Ω0(M,Λr(T ∗M)⊗ E).

Remark 2.5.40. Analogously to Remark 2.5.34, any bundle-valued form ω ∈
Ωr(M,E) can be viewed as an alternating R-linear map

ωx : TxM × ...× TxM︸ ︷︷ ︸
r−times

→ Ex

If (e1, ..., ek) is a local frame for E over an open set U ⊆ M then any element
ω ∈ Ωr(U,E) can be written as a sum ω =

∑
i ωi ⊗ ei where ωi is a differential

form on U .
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We also get a bundle valued form criterion that we mention for clarity and
the rest can be similarly adapted.

Theorem 2.5.41. (The Bundle-valued Form Criterion) Let E be a vector bun-
dle. Then there is a natural isomorphism between Ωr(M,E) and alternating
C∞(M)-multilinear functions

Ω0(M,TM)× ...× Ω0(M,TM)︸ ︷︷ ︸
r−times

→ Ω0(M,E).
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2.6 Symplectic Manifolds

As mentioned above we will describe our classical (Hamiltonian) systems via
symplectic manifolds.

Let V be an m-dimensional vector space over R and let ω : V × V → R be
a bilinear map.

Definition 2.6.1. The map ω̃ : V → V ∗ is defined by ω̃
(
u
)
(v) = ω(u, v) for

u, v ∈ V .

Remark 2.6.2. It is clear that ω̃ is linear.

Definition 2.6.3. A skew-symmetric bilinear map ω is non-degenerate if ω̃
from Definition 2.6.1 is an isomorphism. In other words ω is non-degenerate if
ω(u, v) = 0, for all v ∈ V implies that u = 0.

Definition 2.6.4. A symplectic manifold is a pair (M,ω) where the symplectic
form ω is a closed non-degenerate differential 2-form on M .

Example 2.6.5. The symplectic manifold (M,ω) that we will study in section
5.3 will describe a 2-dimensional Hamiltonian system. We write M = T ∗R
with global canonical coordinates q and p. The position coordinate is q and the
momentum coordinate is p varying on the cotangent fibres. Then we claim that
the 2-form ω := dq ∧ dp defines a symplectic form on M . It is closed, since it
is exact. Indeed the 1-form α = −pdq satisfies dα = −dp ∧ dq = dq ∧ dp = dω.
For the non-degeneracy it is particularly instructive to look at the matrix of the
bilinear form ω. We have

ω = dq ∧ dp = 0 · dq ⊗ dq + dq ⊗ dp− dp⊗ dq + 0 · dp⊗ dp

that means that the matrix of ω in this frame is

(
0 1
−1 0

)
. Since the determi-

nant of this matrix equals 1 it follows that ω is non-degenerate.

Remark 2.6.6. A differential 2-form is skew symmetric by definition, in par-
ticular the symplectic form ω fulfils ω(x, y) = −ω(y, x), x, y ∈ M . Moreover,
the symplectic form is non-degenerate and therefore must have full rank. Since
a skew symmetric matrix is not invertible in odd dimensions, we understand
that a symplectic manifold needs to have even dimension.

Theorem 2.6.7. (Darboux’s Theorem) Every point a ∈ M of a symplectic
manifold has an open neighbourhood U ⊆M and a chart

σ = (q1, ..., qn, p1, ..., pn) : U → V ⊆ Rn ⊕ Rn,

such that ω|U =
∑
j dqj ∧ dpj. The qj , pk are called Darboux coordinates.

Remark 2.6.8. We understand from Darboux’s theorem that every symplectic
manifold is locally isomorphic to T ∗Rn. This motivates why we are considering
T ∗R in Example 2.6.5. We will continue the discussion of this flat case later on
in Hamiltonian mechanics as well as in the quantisation process.
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2.7 Connections

As mentioned above we are going to construct the Hilbert phase space of the
quantum system out of sections on vector bundles. One could then ask how
the derivative (which is central for physical purposes) is defined for sections on
vector bundles. The answer to that question is given by connections. There are
many definitions of connections. We will only cite a few of them. We will also
discuss connections on principal G-bundles since, as explained above, they are
more general than vector bundles and we can therefore gain some insight about
connections on vector bundles thanks to such an approach.

2.7.1 Covariant Derivative

We first define a connection as a first order differential operator. We then define
a Koszul connection, which is the most familiar way of defining a connection.
These definitions are only valid for vector bundles.

Definition 2.7.1. Let π : E → M be a vector bundle. A connection is a first
order differential operator ∇ : Ω0(M,E)→ Ω1(M,E) such that:

∇(fs) = df ⊗ s+ f∇s, where f ∈ C∞(M) and s ∈ Ω0(M,E).

Definition 2.7.2. Let π : E → M be a vector bundle. A covariant deriva-
tive operator in E is a map ∇ : Ω0(M,TM) × Ω0(M,E) → Ω0(M,E) writ-
ten (X, s) 7→ ∇Xs which satisfies the following for any X,Y ∈ Ω0(M,TM),
s1, s2 ∈ Ω0(M,E) and f ∈ C∞(M):

1. ∇X+fY s = ∇Xs+ f∇Y s (linear on vector fields);

2. ∇X(s1 + s2) = ∇Xs1 +∇Xs2 (additive on section);

3. ∇X(fs) =
(
X.f

)
s+ f∇Xs (Leibniz rule).

In words, the covariant derivative operator in E associates to any vector field
X ∈ Ω0(M,TM) a linear map Ω0(M,E) → Ω0(M,E) satisfying Leibniz. We
call ∇X the covariant derivative operator along X.

Theorem 2.7.3. Every vector bundle admits a connection.

Remark 2.7.4. The proof of 2.7.3 is given by a partition of unity argument.

We now specialise to line bundles which are particularly important for geo-
metric quantisation. First we look at trivial line bundles.

Remark 2.7.5. For the following lemma, it will be important to understand
that Ω1(M,End(L)) ∼= Ω1(M,C) for a trivial line bundle π : L → M . From
Example 2.5.5, we know that End(L) defines a line bundle. It is in addition
trivialisable since we can find a nowhere vanishing global section (see Propo-
sition 2.4.34), for example s : M → End(L), x 7→ idLx

. Hence, we can write
Ω1(M,End(L)) as the space of C-valued 1 forms Ω1(M,C).
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Lemma 2.7.6. Each connection ∇ on L = M × C→M is of the form

∇ = d− β (2.2)

with d the exterior derivative acting on a coefficient function and
β ∈ Ω1(M,End(L)) ∼= Ω1(M,C) a suitable complex differential form. Con-
versely for each β ∈ Ω1(M,C) the above formula defines a connection on L.

Proof. Let us first check that ∇ := d−β is a connection for each β ∈ Ω1(M,C).
Let f, g ∈ C∞(M) be smooth functions on M and s = gs1 ∈ Ω0(M,L) be a
section, where s1 is the constant section. We calculate

∇(fs) = (d− β)(fs)

= df ⊗ gs1 + fdg ⊗ s1 − βfgs1

= df ⊗ gs1 + f(d− β)gs1

= df ⊗ s+ f∇s.

This shows that ∇ is a connection since it fulfils the condition from Definition
2.7.1.
Conversely, let ∇ be an arbitrary connection on L. We know that ∇ fulfils the
condition from Definition 2.7.1. Therefore

∇(gs1) = dg ⊗ s1 + g∇s1.

Since ∇s1 ∈ Ω1(M,M×C) ∼= Ω1(M,C), we can define the 1-form β ∈ Ω1(M,C)
such that −β ⊗ s1 = ∇s1. This is indeed a sensible definition since we know
that a global nowhere-vanishing section is equivalent to a global frame on a line
bundle. It follows that

∇s = dg ⊗ s1 + g∇s1 = (d− β)s.

Remark 2.7.7. Let us unpack Lemma 2.7.6. We know from Example 2.4.33
that any section of a trivial line bundle is of the form fs1 with f ∈ C∞(M)
and s1 the constant section. Combining Definition 2.2.38 and Remark 2.2.49,
we know that < df,X >= X.f is well defined and gives another function in
C∞(M). Finally < β,X > means that we are regarding β ∈ Ω1(M,C) as
being the alternating C∞(M)-multilinear map eating vector fields on M and
outputting functions in C∞(M,C) as showed in Theorem 2.5.36. Therefore
letting (2.2) act on a section fs1 along a vector field X yields:

∇X(s) = (X.f + β|Xf)(s1), s = fs1|U , f ∈ C∞(U), U ⊆M.

We now want to describe connections on any line bundle locally with Lemma
2.7.6.
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Proposition 2.7.8. Let π : L → M be a possibly non-trivial line bundle
and (Uj , ϕj)j∈J be a local trivialisation system with corresponding transition
functions gjk ∈ C∞(Uj ∩ Uk,C×) (recall Proposition 2.4.36). Any connection
∇ determines uniquely a collection {αj}j∈J of 1-forms Ω1(Uj ,C) satisfying:

αk − αj = dgjkg
−1
jk

Conversely any collection {αj}j∈J satisfying the condition above induces a con-
nection on L with restriction on Uj given by:

∇X(fsj) = (X.f + αj |Xf)(sj), sj = ϕ−1
j (x, 1), ∀x ∈ Uj .

Thus the information of the connection is encoded in the αj on the local
trivialisations. The αj are called local connection forms.

2.7.2 Principal Bundle Connection

We will be able to induce a connection on the associated bundle of a principal
bundle, see Subsection 2.7.3.

Definition 2.7.9. Let π : E → M be a fibre bundle over a smooth manifold
with fibre F . A preconnection on E is a distribution H on E with the additional
property that for every p ∈ E the map Dπ(p)|Hp

: Hp → Tπ(p)M is a linear
isomorphism.

Theorem 2.7.10. Every fibre bundle admits a preconnection.

Definition 2.7.11. Let π : E → M be a fibre bundle over a smooth manifold
with fibre F . Then the vertical bundle V E ⊆ TE is the subbundle of the tangent
bundle of E whose fibre over p ∈ E is kerDπ(p), where Dπ(p) : TpE → Tπ(p)M .
A tangent vector ζ at p is said to be vertical if ζ ∈ VpE, i.e. if Dπ(p)[ζ] = 0.

Remark 2.7.12. We then understand that a preconnection is a distribution on
E which is complementary to the vertical bundle V E, that is TE = H ⊕ V E.
This is the geometrical interpretation of a preconnection.

Definition 2.7.13. Let π : E → M be a fibre bundle with preconnection H.
The splitting TE = H⊕ V E from Remark 2.7.12 allows us to write any vector
ζ ∈ TE uniquely as ζ = ζH + ζV where for ζ ∈ TpE we have ζH ∈ Hp and
ζV ∈ VpE. We call ζH the horizontal component and ζV the vertical component
of ζ. A vector is horizontal if ζV = 0 and vertical if ζH = 0.

Definition 2.7.14. Let x ∈M , p ∈ Ex and v ∈ TxM . Then the horizontal lift
of v at p is the unique vector v̄ ∈ Hp such that Dπ(p)[v̄] = v.

Definition 2.7.15. Let X ∈ Ω0(M,TM) be a vector field. Then the horizontal
lift of X is the unique vector field X̄ ∈ Ω0(E, TE) such that X̄(p) ∈ TpE is the
horizontal lift of X(π(p)) ∈ Tπ(p)M at p for each p ∈ E.
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Definition 2.7.16. Let π : E → N be a fibre bundle and let H be a precon-
nection on E. Suppose φ : M → N is a smooth map and let s ∈ Ω0

φ(M,E) be
a section along φ. We say that s is horizontal along φ if

Ds(x)[TxM ] ⊆ Hs(x), ∀x ∈M.

Remark 2.7.17. If φ from Definition 2.7.16 is the identity map, we say that
the section s ∈ Ω0(M,E) is horizontal.

Example 2.7.18. Take M to be the interval (a, b) and φ = γ : (a, b) → N to
be a smooth curve in N . Thus a section c ∈ Ω0

γ(M,E) is a smooth curve in
E such that c(t) ∈ Eγ(t) for all t ∈ (a, b). Moreover c is horizontal along γ if
c′(t) ∈ Hc(t),∀t ∈ (a, b).

Let us now define a connection on a principal G-bundle (π, P,M,G). Let
µ : P × G → G be the right action of G on P . We will denote by ra : P → P
the right G-action ra(p) := µ(p, a) = p · a, p ∈ P, a ∈ G.

Definition 2.7.19. A G-connection on P is a preconnection H which satisfies

Dra(p)[Hp] = Hp·a, ∀p ∈ P, a ∈ G. (2.3)

Remark 2.7.20. Given a left action µ as in Definition 2.4.5 with Lie group
G = GLk(R), we can define, analogously to Definition 2.7.19, a connection H
on a vector bundle π : E →M as a preconnection with the additional property
that Dµa(p)[Hp] = Ha cot p. Such a connection induces a covariant derivative
and conversely a covariant derivative induces a connection (see [1], Theorem
31.10). We will from now on use these two terms interchangeably. Additionally,
one can show that s ∈ Ω0(M,E) is horizontal if and only if ∇X(s) = 0 for all
X ∈ Ω0(M,TM).

We will now give a definition of connection forms. These are 1-forms which
give a more applicable definition of connections on principal G-bundles.

Definition 2.7.21. Let G be a Lie Group with Lie algebra g and let P be a
principal G-bundle. For each v ∈ g we can define the fundamental vector field
ξv on P via

ξv(p) :=
d

dt

∣∣∣
t=0

p · exp(tv) ∈ TpP,

where exp: g→ G is the exponential map (see [1] Section 10).

Remark 2.7.22. The fundamental vector field is indeed well defined since
for p ∈ P , the curve γp(t) := p · exp(tv) is a curve in P with initial point
γp(0) = p · e = p. Thus γ′p(0) belongs to TpP .

Proposition 2.7.23. Define the map ηp : G → P , via ηp(a) := p · a, p ∈ P ,
then we can write the fundamental vector field via Dηp(e)[v] = ξv(p).
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Proof. Define the smooth curve γp as in Remark 2.7.22. Then we can write:

Dηp(e)[v] =
d

dt

∣∣∣
t=0

ηp(exp(tv)) =
d

dt

∣∣∣
t=0

p · exp(tv) = ξv(p).

Proposition 2.7.24. Let ηp be the map from Proposition 2.7.23. For any
p ∈ P , the differential Dηp(e) at e is an isomorphism Dηp(e) : g→ VpP .

Definition 2.7.25. Let H be a G-connection on P . The connection form α of
H is defined by

αp(ζ) := Dηp(e)
−1[ζV ], p ∈ P, ζ ∈ TpP.

One can show that it is a g-valued 1-form α ∈ Ω1(P, g).

Proposition 2.7.26. (Properties of the connection form) The connection form
induced by the G-connection H from Definition 2.7.25 is smooth and has the
following properties:

1. it is G-equivariant, i.e. r∗a(α) = Ada−1(α), ∀a ∈ G

2. α(ξv) = v, ∀v ∈ g.

Proposition 2.7.27. Any 1-form α ∈ Ω1(P, g) which satisfies the properties
listed in Proposition 2.7.26 defines a connection on P via Hp := kerαp.

Proof. We first note that ker(α) is a subbundle of the tangent bundle TP since
α is smooth. We know that any element of TP can be uniquely written in a
vertical and horizontal part. Now from Proposition 2.7.24, we know that ξ·(p) =
Dηp(e)(·) maps isomorphically g to VpP . The second property in Proposition
2.7.26 tells us that α maps ξv to v 6= 0. That means that ker(α) automatically
belongs to the horizontal part of TP . Thus it follows that TP = ker(α) ⊕ V P
and H is a preconnection. Moreover, the first property in Proposition 2.7.26
tells us that α is G-equivariant, i.e. Dra[ker(α)] ⊆ ker(α). Applying Dra−1 on
both sides yields:

ker(α) = Dra−1 ◦Dra[kerα] ⊆ Dra−1 [ker(α)]

and with the G-equivariance property Dra−1 [ker(α)] ⊆ kerα. Thus we have
Dra[kerα] = kerα which shows that kerα is a connection.

Remark 2.7.28. We now understand that a G-connection on a principal G-
bundle is equivalent to a connection form. These forms are called in physics
global gauge potentials.

We would like now to discuss local gauge potentials which are induced by
the global gauge potential (connection form).
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Definition 2.7.29. Let U ⊆ M be an open subset of M and s ∈ Ω0(U,P ) a
section. The local gauge potential over U associated to the connection form α
is defined as As := s∗α ∈ Ω1(U, g).

Proposition 2.7.30. Let si : Ui → P, i ∈ {1, 2} over Ui ⊆ P be local sections
and Ai = s∗iα, i ∈ {1, 2} be the corresponding local gauge potentials over Ui.
Then the following holds on U1∩U2: A1 = g21A2g

−1
21 +g21dg

−1
21 where g21(x) ∈ G

is the uniquely defined group element with s2(x) = s1(x)g21(x), x ∈ U1 ∩ U2.

Proposition 2.7.31. Given a collection (Aj)j∈J of g-valued 1-forms with Aj =
gijAig

−1
ij + gijdg

−1
ij , ∀i, j ∈ J , there is a connection form α whose local gauge

potentials are the Aj .

We will from now on only regard connections on principal G-bundles as being
the connection forms, i.e. local Lie-algebra-valued forms.

2.7.3 Connections on Frame and Associated Bundles

We first state the general result that a connection form on a principal bundle
induces a connection on its associated bundle and that a connection on a vector
bundle defines a connection on its associated frame bundle.

Proposition 2.7.32. Let ρ : G → GL(V ) be a r-dimensional representation
of the structure group G of the principal G-bundle P and let (Uj , ϕj)j∈J be a
system of local trivialisations with associated local sections sj(a) = ϕ−1

j (a, 1).
We write Vρ := P ×ρ V for the associated vector bundle to P . Let α ∈
Ω1(P, g) be a connection 1-form, then the differential forms αj := DρeG(s∗jα) ∈
Ω1(Uj , gl(V )) induce a covariant derivative on Vρ, whereDρeG is the Lie-algebra-
representation of g induced by ρ.

Remark 2.7.33. The differential forms αj defined in Proposition 2.7.32 gener-
alise the notion of local connection forms on line bundles from Proposition 2.7.8
to arbitrary dimensional vector bundles.

Remark 2.7.34. Proposition 2.7.32 gives a bijection between connections on
a vector bundle E and connections on Fr(E).

We now restrict ourselves to line bundles and we show explicitly the bijective
correspondence stated in Remark 2.7.34

Remark 2.7.35. The frame bundle associated to a line bundle π : E → M is
L×, which is L with the zero section removed, i.e. we remove the zero vector
of the fibres: L× := L \ {0a ∈ La | a ∈ M}. Thus L× is a principal C×-bundle
with projection π : L× → M and system of local trivialisations (Uj , ϕ

×
j ) which

are both restrictions of the line bundle structure of L.

Definition 2.7.36. Let mc : L× → L× denote the multiplication by c ∈ C×,
i.e. mc(l) = lc = cl.
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Proposition 2.7.37. Let π : L → M be a line bundle with system of local
trivialisations (Uj , ϕj)j∈J equipped with local connection forms {αj}j∈J as in
Proposition 2.7.8. We can then use the local connection forms to define a 1-form
α ∈ Ω1(L×,C) on the associated frame bundle π : L× → M defined on L×|Uj

as:

α := π∗αj + ϕ∗j

(
1

z
dz

)
,

where j ∈ J and z the standard coordinate on C. The 1-form α fulfils the
following condition:

1. m∗c(α) = α, ∀c ∈ C×,

2. α(ηp) = p, ∀p ∈ C.

Thus α ∈ Ω1(M) is a global gauge potential (cf. Proposition 2.7.26).

Proposition 2.7.38. Conversely, every α ∈ Ω1(L×,C) fulfilling condition 1
and 2 from Proposition 2.7.37 induces a connection on L by

∇Xs := s∗α(X)s, s ∈ Ω0(U,L), X ∈ Ω0(U, TM).

2.7.4 Parallel Transport

We now define parallel transport which gives us another viewpoint on connec-
tions. It enables one to transport geometrical data from one point to another
along smooth curves on the base space.

Definition 2.7.39. Let π : E →M be a vector bundle over a smooth manifold.
A parallel transport system P on E assigns to every point p ∈ E and every
curve γ : [a, b] → M with γ(a) = π(p), a unique section Pγ(p) ∈ Ω0

γ([a, b], E)

with initial condition p, i.e. such that
(
Pγ(p)

)
(a) = p. One calls Pγ(p) the

parallel lift of γ starting at p. This association should satisfy the following four
axioms:

1. For every smooth curve γ : [a, b]→M the map P̂γ : Eγ(a) → Eγ(b), P̂γ(p) :=(
Pγ(p)

)
(b) is a linear isomorphism. Moreover P̂−1

γ = P̂γ− where γ− : [a, b]→
M is the reverse curve t 7→ γ(a− t+ b).

2. Pγ(p) is independent of the parametrisation of the curve γ.

3. Pγ(p) depends smoothly on both γ and p.

4. Suppose γ, δ : [a, b]→M are two curves such that γ(a) = δ(a) and γ′(a) =
δ′(a). Then for each p ∈ Eγ(a), the two curves t 7→ Pγ(p)(t) and t 7→
Pδ(p)(t) have the same initial tangent vector:

d

dt

∣∣∣
t=a

Pγ(p)(t) =
d

dt

∣∣∣
t=a

Pδ(p)(t).
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Definition 2.7.40. If γ : [a, b] → M is a smooth curve on M and let c ∈
Ω0
γ([a, b], E) is any section along γ then we say that c is parallel along γ if

c = Pγ(p) for some p ∈ Eγ(a).

We will state that a parallel transport system induces a connection and
conversely. Let us first define what horizontal lifts of curves are.

Definition 2.7.41. Let γ : [a, b] → M be a smooth curve in M . A horizontal
lift of γ is a smooth curve λ : [a, b]→ E such that

1. γ = π ◦ λ

2. λ′(t) ∈ Hλ(t),

i.e. λ is horizontal along γ.

Proposition 2.7.42. Let π : E →M be a fibre bundle and let H be a precon-
nection on E. Let γ : (a, b)→M be a smooth curve and let t0 ∈ (a, b). Then for
any p ∈ Eγ(t0), there exists a unique horizontal lift c of γ such that c(t0) = p.

We now state the correspondence between parallel transport systems and
connections.

Theorem 2.7.43. Let π : E → M be a vector bundle and let P be a parallel
transport system on E. Then P determines a connection H on E by the following
property: a section c along a curve γ is parallel in the sense of Definition 2.7.40
if and only if c is horizontal with respect to H in the sense of Definition 2.7.16.

Remark 2.7.44. The intuition behind the correspondence between parallel
sections and horizontal sections of Theorem 2.7.43 relies on the uniqueness of
horizontal sections from Proposition 2.7.42 and on the uniqueness of parallel
sections from Definition 2.7.39.

Conversely a connection induces a parallel transport.

Theorem 2.7.45. Let π : E →M be a vector bundle and let H be a connection
on E. The system of all horizontal lifts to E of smooth curves in E defines a
parallel transport system P in E.

Remark 2.7.46. One can prove the following direct relation between a covari-
ant derivative ∇ on E and the corresponding parallel transport system

(∇Xs) (x) = lim
h→0

P̂γ(s ◦ γ(h))− s ◦ γ(0)

h
, γ(0) = x, γ′(0) = X(x), s ∈ Ω0(M,E).

Therefore the covariant derivative ∇X measures to what extent the section s
deviates from being horizontal along the curve γ. To see this, recall from Remark
2.7.20 that a section is horizontal if and only if∇Xs = 0 and P̂γ(s◦γ(h))−s◦γ(0)
vanishes when s ◦ γ is parallel along γ.
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2.8 Curvature

Curvature will give us one of the prequantisation criteria.

Definition 2.8.1. Let π : E → M be a vector bundle with connection ∇.
We say that ∇ is a flat connection if the corresponding distribution H of E is
integrable. The pair (E,∇) is referred to as a flat vector bundle.

Definition 2.8.2. Let π : E → M be a vector bundle with connection ∇.
The curvature tensor R∇ of ∇ is defined as follows. For vector fields X,Y ∈
Ω0(M,TM) and s ∈ Ω0(M,E) define R∇ by setting

R∇(X,Y )(s) := [∇X ,∇Y ](s)−∇[X,Y ](s).

Remark 2.8.3. The curvature form Ω is defined as Ω(X,Y ) := R∇(X,Y ), X, Y
∈ Ω0(M,TM). One can show that this curvature form is an element of Ω2(M,E)
and that on a vector bundle with local trivialisation system (Uj , ϕj)j∈J it is
induced by the local connection forms {αj}j∈J as follows: Ω|Uj

:= dαj + αj ∧
αj , j ∈ J . In particular, αj∧αj vanishes on a line bundle and the curvature form
becomes Ω|Uj = dαj . We will also denote the curvature form as Curv(E,∇)
since it is specific to a certain vector bundle and it is related to the connection.
By abuse of notation, we will write Curv(∇), since a certain connection lives on
a specific vector bundle.

Proposition 2.8.4. The following properties are equivalent:

1. ∇ is a flat connection.

2. The corresponding parallel transport is locally independent of the curves.

3. The curvature equals zero, i.e. R∇(X,Y ) = 0, X, Y ∈ Ω0(U, TM).

We now define what a curvature form on a principal bundle is.

Definition 2.8.5. Let π : P → M be a principal G-bundle with G-connection
given by connection form α ∈ Ω1(P, g). The curvature form Ω ∈ Ω2(P, g) is
given by

Ω := dα+
1

2
[α, α], (2.4)

where [·, ·] denotes the product of Lie algebra-valued forms from Example 2.5.38.

We now restrict ourselves to line bundles to show how curvature forms on
principal C×-bundles L× relate to curvature forms on their associated vector
bundles L and conversely.

Remark 2.8.6. Note that on L× the curvature form takes the form dα. Indeed
the connection form α belongs to Ω1(L×,C) and therefore [α, α] in equation (2.4)
vanishes (see Example 2.5.38 and recall that the only possible Lie bracket on C
is the trivial bracket). We will thus denote dα the connection form on L× and
Ω the connection form on L.
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Proposition 2.8.7. Let π̃ : L → M be a line bundle and π : L× → M the
associated principal C×-bundle, then the following hold:

1. π∗Ω = dα and

2. conversely, s∗dα = Ω|U for any section s ∈ Ω0(U,L×).

2.9 Integration

We will now discuss integration on orientable smooth manifolds. As mentioned
earlier, differential forms are going to be very important to make sense of inte-
gration.

We will first discuss orientability of smooth manifolds since we can only
integrate on orientable smooth manifolds.

Let us first define what orientable means for vector spaces.

Definition 2.9.1. Let V be a one-dimensional real vector space. Then V \ {0}
has two components. An orientation of V is a choice of one of these components,
which one labels positive. The other one will be denoted negative.

Definition 2.9.2. The determinant of V is Λn(V ) where n = dim(V ). We will
denote it with detV . An orientation on V is then a choice of orientation on
detV .

We now define what orientable means for vector bundles.

Definition 2.9.3. Let π : E → M be a vector bundle. The determinant line
bundle associated to E is the vector bundle detE →M of rank one whose fibre
over x ∈M is detEx.

Remark 2.9.4. The above definition of the determinant line bundle is sensible
by the Metathorem, since it doesn’t involve a choice of basis.

Definition 2.9.5. A vector bundle E is orientable if there is a smooth nowhere
vanishing section µ ∈ Ω0(M,detE∗).

Remark 2.9.6. We note that from Proposition 2.4.34 the condition from Def-
inition 2.9.5 is equivalent to the line bundle detE∗ →M being trivialisable.

Definition 2.9.7. Let µ be a non-vanishing section of detE∗. Then the equiv-
alence class [µ] is called an orientation, where the equivalence relation is defined
as follows. Let µ and η be two non-vanishing sections of detE∗. The two sec-
tions are equivalent if there exists a smooth function f : M → (0,∞) such that
µ = fη. Additionally if we set [µ] to be the positive orientation, then hµ with
h : M → (−∞, 0) defines the negative orientation.

Definition 2.9.8. A smooth manifold M is said to be orientable if the tangent
bundle TM is an orientable vector bundle.
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Definition 2.9.9. A volume form on an n-dimensional smooth manifold M is
a nowhere vanishing differential n-form.

Remark 2.9.10. Since Ω0(M,detT ∗M) equals Ωn(M), we understand that µ
from Definition 2.9.7 is a nowhere vanishing form of top degree. These volume
forms will give us the mass which we will integrate. A smooth manifold M with
a choice of orientation [µ] will be denoted (M, [µ]) and we will say that it is an
oriented manifold.

Remark 2.9.11. Let (M, [µ]) and (N, [ν]) be two oriented manifolds of the
same dimension n. Suppose φ : M → N is a diffeomorphism. Then there exists
a smooth nowhere vanishing function f ∈ C∞(M) such that φ∗(ν) = fµ. Indeed
we have (φ∗(ν))p(v) = νφ(p)(Dφpv). We know that ν is nowhere vanishing and
we also know that Dφp is an isomorphism. Thus for v 6= 0, φ∗(ν) is nowhere
vanishing. The existence of the function is due to the fact that Ωn(M) is the
space of sections of a one-dimensional bundle (see Example 2.4.33). We say that
φ is orientation preserving if f is everywhere positive, i.e. [φ∗(ν)] = [µ].

Definition 2.9.12. A chart σ : U → O on an oriented smooth manifold M of
dimension n is said to be positively oriented if σ is an orientation preserving
diffeomorphism between manifolds U and O, where U inherits the orientation
of M and O inherits the standard orientation from µ := dx1 ∧ · · · ∧ dxn, where
x1, ..., xn are the standard coordinates of Rn.

We now define integration, first for open subsets U of Rn and then more
generally for oriented manifolds.

Definition 2.9.13. The support of a differential form α ∈ Ωn(M) is defined as
the set {p ∈M | α(p) = 0}. We denote it by supp(α).

Definition 2.9.14. Let U ⊆ Rn be open with standard coordinates (x1, ..., xn)
and α ∈ Ωn(Rn). From Proposition 2.5.27 we may write α = fdx1 ∧ · · · ∧ dxn
for some function f . Suppose supp(α) ∩ U is compact. We define the integral
of α on U by ∫

U

α =

∫
U

fdx1 ∧ · · · ∧ dxn :=

∫
U

fdx1 · · · dxn

where we use for the last term the Lebesque integral, with respect to the
Lebesque measure dx1...dxn on Rn.

Definition 2.9.15. Let M be an oriented manifold of dimension n and let
α ∈ Ωn(M). Assume that α has compact support inside U for some positively
oriented chart (U, σ). One can show that (σ−1)∗α have compact support on
σ(U). We define the integration of α on U as follows∫

U

α :=

∫
σ(U)

(σ−1)∗α.
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Example 2.9.16. We will be mostly interested in integrating on symplectic
manifolds, which will describe the classical system we will consider. A symplec-
tic manifold M of dimension 2n endowed with a symplectic form ω is orientable.
Indeed we can define the following differential form of top degree:

µ :=
1

n!
ω ∧ · · · ∧ ω︸ ︷︷ ︸
n−times

=
ω∧n

n!

which is nowhere vanishing since ω is non-degenerate. This differential form µ
is called the Liouville volume form.

For the symplectic manifold (M,ω) from Example 2.6.5, the Liouville volume
form is µ = ω, because n = 1.

We now state Stokes’ theorem. We will not discuss manifolds with bound-
aries. More about this topic can be found in [1] and in [3]. We just recall that
the boundary ∂M naturally comes with the structure of a smooth orientable
manifold of dimension n− 1. Additionally, if M is orientable then ∂M receives
an induced orientation.

Theorem 2.9.17. (Stokes’ Theorem) Let M be an oriented smooth manifold
of dimension n with boundary and give ∂M the induced orientation. Then for
any ω ∈ Ωn−1(M) with compact support we have∫

M

dω =

∫
∂M

ι∗ω,

where ι : ∂M ↪→M .

Remark 2.9.18. In particular,
∫
M
dω = 0 if ∂M = ∅.
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Chapter 3

Hamiltonian Mechanics

We will first describe Hamiltonian mechanics on generic symplectic manifolds.
We will then specialise to vector spaces.

3.0.1 Hamiltonian system

For the following, (M,ω) denotes a symplectic manifold of dimension 2n, which
we call phase space in the context of Hamiltonian mechanics.

Proposition 3.0.1. The musical maps ω[ and its inverse ω] are vector bundle
isomorphisms. They are defined as follows:

ω[ : TM → T ∗M, ω[(X)(Y ) := ω(X,Y ), X, Y ∈ TM

and its inverse is defined as:

ω] : T ∗M → TM, ω] := (ω[)−1.

Proof (Sketch). We have to show that ω[ is an isomorphism and that it is
smoothly varying on M . Since ω[ is linear and the dimensions of TM and
T ∗M are the same, it is sufficient to show that ω[p is injective for all p ∈ M .

The kernel of ω[p is given by:

Ker(ω[p) = {X ∈ TpM | ω(X,Y ) = 0, ∀Y ∈ TpM}.

From the non-degeneracy of the symplectic form ω it follows that Ker(ω[p) = {0}.
The proof that ω[ is smoothly varying on M is left to the reader.

Remark 3.0.2. In local coordinates, the musical isomorphisms are given as
follows. Let (x1, ..., x2n) denote local coordinates on U ⊆ M . We can write
the symplectic form on U locally as ω|U =

∑
ij ωijdxi ∧ dxj , ωij ∈ C∞(U).
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For a vector field X ∈ Ω0(U, TM) written X =
∑
kXk

∂
∂xk

, the flat musical
isomorphism on U applied on X yields:

ω[(X) = ω(X, ·) =
∑
ij

ωijXidxj =:
∑
j

ω[(X)jdxj .

For a 1-form α ∈ Ω1(U), the sharp musical isomorphism applied on α =∑
k αkdxk yields:

ω](α) =
∑
ji

ω−1
ij αi

∂

∂xj
=:
∑
j

ω](α)j
∂

∂xj
. (3.1)

With this we can associate to each function its Hamiltonian vector field.
This vector field will enable us to describe the dynamics of a classical system.

Definition 3.0.3. To every function H ∈ C∞(M), the Hamiltonian vector field
XH of H is defined as:

XH := ω] ◦ dH. (3.2)

The triple (X,ω,H) is called a Hamiltonian system.

Remark 3.0.4. Equivalently, we find dH = ω[XH by applying ω[ on the left
of equation (3.2). Thus XH is the uniquely defined vector field satisfying

ω(XH , Y ) = ω[(XH)(Y ) = dH(Y ) = Y.H, Y ∈ Ω0(M,TM) (3.3)

In local coordinates (x1, ..., x2n) on U ⊆ M , the Hamiltonian vector field takes
the form:

XH |U =
∑
ji

ω−1
ij

∂H

∂xi

∂

∂xj
, (3.4)

by using equation 3.1 and dH =
∑
k
∂H
∂xk

dxk.

Definition 3.0.5. A trajectory of the Hamiltonian system (M,ω,H) is a curve
γ(t) = (x1(t), ..., xn(t))T ∈ M such that γ′(t) = XH(γ(t)), ∀t ∈ I ⊆ R. This
system of 1st order non-linear ordinary differential equations are called the equa-
tions of motion.

Remark 3.0.6. Let (q1, .., qn, p1, ..., pn) on U ⊆ M be local Darboux coor-
dinates. Recall that in Darboux coordinates the symplectic form is given by
ω|U =

∑
j dqj ∧ dpj . Using equation (3.4), the equations of motion take the

form:

q′(t) =
∂H

∂p
, p′(t) = −∂H

∂q
,

if q(t) := q(γ(t)), p(t) := p(γ(t)), where (q, p) : U → O ⊆ Rn×Rn is the canonical
chart. These equations are called the canonical Hamiltonian equations.
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3.0.2 Poisson brackets

Hamiltonian mechanics is usually described with the use of Poisson brackets.
Poisson brackets are actually Lie brackets as we will see below.

Definition 3.0.7. The Poisson bracket associated to a symplectic form ω is
defined as follows

{f, g} := ω(Xf , Xg), f, g ∈ C∞(M).

Remark 3.0.8. From Remark 3.0.4, we can write with the help of Poisson
brackets:

{f, g} = Xg.f, g, f ∈ C∞(M). (3.5)

In local Darboux coordinates, the Poisson bracket takes the form:

{f, g} =
∑
j

∂g

∂pj

∂f

∂qj
− ∂g

∂qj

∂f

∂pj
.

Proposition 3.0.9. The Poisson bracket {·, ·} of a symplectic manifold (M,ω)
is a Lie bracket i.e. C∞(M) with {·, ·} is a Lie algebra over R. In addition
{f, ·} : C∞(M) → C∞(M) is a derivation on the R-algebra C∞(M), i.e. it
fulfils the product rule

{f, gh} = g{f, h}+ {f, g}h = g{f, h}+ h{f, g}, f, g, h ∈ C∞(M).

Definition 3.0.10. A classical observable is an element of the R-algebra
(C∞(M), {·, ·}).

Remark 3.0.11. The most important classical observable on a Hamiltonian
system is the Hamiltonian H which measures the energy of the system. Position
and momentum are two other examples of classical observables.

Proposition 3.0.12. A trajectory γ : (t0, t1) → M is a solution of γ′(t) =
XH(γ(t))), ∀t if and only if

f ′ = {f,H}, ∀f ∈ C∞(M),

i.e.

d

dt
f(γ(t)) = {f(γ(t)), H(γ(t))}, ∀t ∈ (t0, t1).

Remark 3.0.13. The equation from Proposition 3.0.12 is going to be central
in the prequantisation procedure. Indeed this equation fixes the dynamics of
the observables on the Hamiltonian system. During the quantisation process,
we would like to construct quantum operators which inherit the dynamics of the
classical observables. The following proposition will be useful to construct these
quantum operators. It relates the Lie bracket of the vector fields Lie algebra to
the Poisson bracket of the C∞(M) Lie algebra.
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Proposition 3.0.14. The map Φ: C∞(M)→ Ω0(M,TM), f 7→ −Xf is a Lie
algebra homomorphism, i.e.

[Xf , Xg] = −X{f,g}, ∀f, g ∈ C∞(M).

Proof. Let f, g, h ∈ C∞(M) be smooth functions on M . We then compute:

[Xf , Xg].h = Xf .(Xg.h)−Xg.(Xf .h)

= {Xg.h, f} − {Xf .h, g}
= {{h, g}, f} − {{h, f}, g}
= {f, {g, h}}+ {g, {h, f}}
(1)
= −{h, {f, g}}
= −X{f,g}.h,

where we used the Jacobi identity in (1) and equation (3.5) several times.

3.0.3 The 2-dimensional Flat Hamiltonian System

Let us discuss a Hamiltonian system on the 2-dimensional symplectic manifold
from Example 2.6.5. We recall that we had global canonical coordinates q and
p on M = T ∗R and the symplectic form was defined as ω = dq ∧ dp. From
equation (3.4) and the matrix representation of the symplectic form, we see
that the Hamiltonian vector field is globaly given by:

XH = (ω12)−1 ∂H

∂q

∂

∂p
+ (ω21)−1 ∂H

∂p

∂

∂q

= −∂H
∂q

∂

∂p
+
∂H

∂p

∂

∂q
,

(3.6)

since (ω11)−1 = (ω22)−1 = 0. Thus the equations of motion take the form:

(q′, p′) =

(
∂H

∂q
,−∂H

∂p

)
,

where q(t) := q(γ(t)), p(t) := p(γ(t)) and γ(t) a trajectory of the system. These
equations of motion obviously agree with the local equations of motion from
Remark 3.0.6.
Finally we compute the Hamiltonian vector fields to the classical observables of
position and momentum by inputting q, p instead of H in equation (3.6):

Xq = − ∂

∂p
, Xp =

∂

∂q
.
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Chapter 4

Quantum Mechanics

We will present the basics of quantum mechanics in the optic of geometric quan-
tisation. We discuss the axioms of quantum mechanics, the Schrödinger position
and momentum representation, the Heisenberg uncertainty principle, the Stone–
von Neumann theorem and the Heisenberg picture of quantum mechanics.

4.1 The Axioms of Quantum Mechanics

We describe here the fundamental assumptions of quantum mechanics which
were motivated by experiments. We will denote these assumptions as axioms
and only cite the ones which are relevant for quantisation. One can find a further
discussion in [4].
Quantum mechanics is a microscopic description of nature. The fundamental
idea of quantum mechanics is that a physical system can only be described
probabilistically. This probabilistic description of a physical system is encoded
in a pure state (we will not discuss mixed states), i.e. a line in a Hilbert space,
the so called quantum Hilbert space. Let us now formally describe this idea
with the following axioms.

Axiom 1. The state of the system is represented by a unit vector ψ (up to a
phase) in a Hilbert space H with inner product < · | · >. We call ψ the wave
function of the system.

Remark 4.1.1. We will use the convention that the inner product of the quan-
tum Hilbert space is linear in the first component and antilinear in the second.

Example 4.1.2. For a particle living in R3, the quantum Hilbert space is
L2(R3) with inner product

< ψ | φ >:=

∫
R3

ψ(~x)φ(~x)d3~x, ψ, φ ∈ L2(R3)

and the wave functions ψ are unit vectors in L2(R3). This is sensible as the prob-
ability distribution of the position of the particle is actually given by |ψ(~x)|2,
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as we will understand after axiom 3, and therefore the following should hold

1 =

∫
R3

|ψ|2d3~x =

∫
R3

ψ(~x)ψ(~x)d3~x =< ψ | ψ > .

Before stating the second axiom, we define what is a self-adjoint operator on
the Hilbert space H. An operator on H is a linear map A : Dom(A)→ H, where
Dom(A) ⊆ H denotes the dense subspace of H where A is defined. An operator
is bounded if there exists C ∈ R such that ‖Aψ‖ ≤ C‖ψ‖, for any unitary
vector ψ ∈ H. If an operator is bounded we can extend it by continuity to the
whole of H. However, the operators that we will encounter will, in general, be
unbounded. We then define the adjoint of an unbounded operator.

Definition 4.1.3. Let A be an operator on H, the adjoint operator A∗ of
A is defined as follows. A vector ϕ ∈ H belongs to the domain Dom(A∗) of
A∗ if the linear functional < ϕ | A· >, defined on Dom(A), is bounded. For
ϕ ∈ Dom(A∗), A∗ϕ is the unique vector χ such that < χ | ψ >=< ϕ | Aψ > for
all ψ ∈ Dom(A).

We can now define what self-adjoint means.

Definition 4.1.4. An operator A on H is symmetric if

< ϕ | Aϕ̃ >=< Aϕ | ϕ̃ >

for all ϕ, ϕ̃ ∈ Dom(A). The operator A is self-adjoint if Dom(A∗) = Dom(A)
and A∗ϕ = Aϕ for all ϕ ∈ Dom(A).

Remark 4.1.5. As stated above, if an operator A is bounded, we can then
automatically extend Dom(A) to H. We can extend Dom(A∗) to H as well.
Thus, A is symmetric if and only if A is self-adjoint.

Axiom 2. To each classical observable f on the classical phase space there is
an associated self-adjoint operator f̂ on the quantum Hilbert space H. We call
such an operator a quantum observable.

Remark 4.1.6. A quantum system is a quantum Hilbert space and a preferred
choice of quantum observable H, the Hamiltonian.

The third axiom explains how the theory of quantum mechanics is linked to
experiments.

Axiom 3. If a quantum system is in a state described by a unit vector ψ ∈ H,
the expected value of the quantum mechanical observable f̂ in the state ψ is
given by Eψ(f̂) =< ψ | f̂ψ >.

Let us now give a motivation for Axiom 2. Per definition, a self-adjoint
operator is in particular a symmetric operator. For symmetric operators the
following proposition holds.

Proposition 4.1.7. Suppose A is a symmetric operator on H.
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• For all ψ ∈ Dom(A), the quantity < ψ | Aψ > is real.

• Suppose λ is an eigenvector forA, meaning thatAψ = λψ for some nonzero
ψ ∈ Dom(A). Then λ ∈ R.

Proof. Since A is symmetric, the following calculataion holds for ψ ∈ Dom(A),
< ψ | Aψ >=< Aψ | ψ >= < ψ | Aψ > and hence, < ψ | Aψ > is real. If ψ is
an eigenvector of A with eigenvalue λ, then λ < ψ | ψ >=< Aψ | ψ >=< ψ |
Aψ >= λ < ψ | ψ >, whence λ = λ.

In physics, the expectation value of a measurement should be real as we
only measure real values. Therefore, Proposition 4.1.7 guarantees that we will
have operators which are physically sensible. The stronger constraint of self-
adjointness is required because of the spectral theorem which is discussed in
[4].

4.2 The Position and Momentum Operators

Now that we understand the foundations of quantum mechanics, we shall discuss
two of the most important operators, the momentum and position operators.

Definition 4.2.1. For a particle moving in R3, let L2(R3) be the quantum
Hilbert space of Example 4.1.2. The position operators (q̂i)i∈{1,2,3} and mo-
mentum operator (p̂i)i∈{1,2,3} are given by

q̂iψ(~x) = xiψ(~x),

p̂iψ(~x) = −i~ ∂

∂xi
ψ(~x),

where ψ(~x) ∈ L2(R3), ~ is the reduced Planck constant.

Remark 4.2.2. The Planck constant h = 2π~ is the quantum of action. It is
an experimentally measured constant, which relates for example the momentum
p of a photon to the frequency k of its wave function via p = ~k, according to
the de Broglie hypothesis (see [4]).

Remark 4.2.3. One can easily show that the position and momentum oper-
ators from Definition 4.2.1 are symmetric (clear for the position operator and
integration by part for the momentum operator). It is however more compli-
cated to show that the operators are (essentialy) self-adjoint, see [4] Chapter
9.

The following relation between the two operators is crucial as it enforces the
Heisenberg uncertainty principle that we will discuss below.

Proposition 4.2.4. The position and momentum operators (q̂i)i∈{1,2,3} and
(p̂i)i∈{1,2,3} satisfy the commutation relation

[q̂k, p̂l] = q̂kp̂l − p̂lq̂k = i~δkl.

We call it the canonical commutation relation.
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Proof. With the product rule, we can calculate the following

[q̂k, p̂l]ψ = −i~xk
∂

∂xl
ψ(~x) + i~

∂

∂xl
xkψ(~x)

= −i~xk
∂

∂xl
ψ(~x) + i~δklψ(~x) + i~xk

∂

∂xl
ψ(~x)

= i~δklψ(~x).

We now define the uncertainty of a quantum observable and the Heisenberg
uncertainty principle.

Definition 4.2.5. If A is a quantum operator on a Hilbert space H and ψ
is a unit vector in H, the standard deviation ∆ψA ∈ R associated with the
measurement of A in the state ψ is given by

(∆ψA)2 = Eψ(A2)− Eψ(A)2.

We call ∆ψA the uncertainty of A in the state ψ.

Proposition 4.2.6. (Heisenberg uncertainty principle) The uncertainties of
the position and momentum operators are related to each other in the following
way:

(∆ψ q̂i)(∆ψp̂j) ≥
∣∣∣∣ 1

2i
Eψ([q̂i, p̂j ])

∣∣∣∣ =
~
2
δij .

A more precise uncertainty principle is given by the Robertson principle.
The derivation of this principle can be found in [4]. The interpretation of the
Heisenberg uncertainty principle is that it is impossible to measure simultane-
ously position and momentum with infinite precision. This will be central when
constructing a quantum Hilbert space in the quantisation process, see Remark
5.3.7.

4.3 The Stone–von Neumann Theorem

In this section we describe the Schrödinger representation of quantum mechanics
and its uniqueness given by the Stone–von Neumann theorem.
Let us first discuss the Heisenberg group.

Definition 4.3.1. The continuous Heisenberg group is the subgroup of Gl3(R)
given by the matrices of the form1 a b

0 1 c
0 0 1

 ,

where a, b, c ∈ R.
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Remark 4.3.2. One can show that the continuous Heisenberg group is a Lie
group and its Lie algebra h is generated by the matrices of the form

X =

0 1 0
0 0 0
0 0 0

 , Y =

0 0 0
0 0 1
0 0 0

 , Z =

0 0 1
0 0 0
0 0 0

 .

The generators of the Lie algebra fulfil the commutation relations [X,Y ] = Z,
[X,Z] = 0 and [Y,Z] = 0.

We will now define what a universal enveloping algebra is.

Definition 4.3.3. Let g be a Lie algebra. The universal enveloping algebra of
g, denoted U(g), is an associative algebra with a Lie morphism ι : g ↪→ U(g)
satisfying the following universal property. If ϕ : g → A is a morphism, where
A is an associative algebra, there is a unique morphism of associative algebras
U(ϕ) : U(g)→ A such that ι = ϕ ◦ U(ϕ)−1.

Remark 4.3.4. The universal enveloping algebra is unique up to isomorphism
because of the universal property. Indeed, suppose that B and B′ are associa-
tive algebras with Lie morphisms ιB : g ↪→ B and ιB′ : g ↪→ B′ satisfying the
universal property. We can then consider B′ as the equivalent to A in Definition
4.3.3 which yields a unique morphism of associative algebras U(ιB′) satisfying
ιB = ιB′ ◦U(ιB′)

−1. Similarly, we find another unique morphism of associative
algebras U(ιB) satisfying ιB′ = ιB ◦ U(ιB)−1. The two morphisms U(ιB′) and
U(ιB) satisfy U(ιB) ◦ U(ιB′) = IB′ as well as U(ιB′) ◦ U(ιB) = IB .

Remark 4.3.5. We can construct the universal enveloping algebra for an ar-
bitrary Lie algebra g via the following procedure. Consider the tensor algebra
Tens(g) :=

⊕
k≥0 g

⊗k. This algebra is a non commutative associative algebra
over C with the product defined on monomials by:

· : Tens(g)× Tens(g)→ Tens(g)

x1 ⊗ · · · ⊗ xn · y1 ⊗ · · · ym 7→ x1 ⊗ · · · ⊗ xn ⊗ y1 ⊗ · · · ym,

where n,m ∈ N. This definition can be extended by C-linearity to any element
of Tens(g). We can then consider the 2-sided ideal I ⊆ Tens(g) generated by:

x⊗ y − y ⊗ x− [x, y],

for x, y ∈ g. One can show that the universal enveloping algebra of g can be
defined as U(g) := Tens(g)/I.

Let us now construct the universal enveloping algebra U(h) of the Heisenberg
Lie algebra h:

U(h) := Tens(h)/(XY − Y X − Z,XZ − ZX, Y Z − ZY ).

This implies that X and Y as well as Y and Z commute in U(h). It also implies
that XY − Y X = Z in U(h).
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Remark 4.3.6. We remark that Z is central in U(h), i.e. Z ∈ {a ∈ U(h) |
ab− ba = 0, ∀b ∈ U(h)}.

For ~ ∈ C, consider the bilateral ideal I~ generated by z− i~. Then U(h)/I~
is isomorphic to the 1-dimensional Weyl algebra W , see [10] Example 1.10. The
1-dimensional Weyl algebra is particularly important in quantum mechanics
as the position and momentum operators on L2(R), discussed in the previous
sections, are a representation of the Weyl algebra. Indeed, the representation
ρSP of L2(R) is the morphism ρSP : W → End(L2(R)) given by:

ρSP (X) = q̂ = x, ρSP (Y ) = p̂ = −i~ ∂

∂x

We call (ρSP , L
2(R)) the Schrödinger position representation. In 3-dimensions,

the Heisenberg Lie algebra is spanned by elements (Xi, Yi)i=1,··· ,3 and Z such
that they fulfil the relations [Xi, Yj ] = Zδij , [Xi, Z] = 0 and [Yi, Z] = 0,
i, j ∈ {1, 2, 3}. The Schrödinger position representation on L2(R3) is then the
morphism ρSP : W → End(L2(R3)) given by:

ρSP (Xj) = q̂j = xj , ρSP (Yj) = p̂j = −i~ ∂

∂xj
, j ∈ {1, 2, 3}.

We can now state the Stone–von Neumann theorem without getting into the
technical details related to the unboundedness of the operators, since these will
not be important for quantisation. One can find a full discussion of the theorem
and its proof in [4], Chapter 14.

Theorem 4.3.7. (Stone–von Neumann) There exists a unique irreducible repre-
sentation of the Weyl algebra W on a Hilbert space up to unitary transformation.

Therefore ρSP is unique up to unitary transformation. The following exam-
ple describes another representation which is unitary equivalent to the Schrödinger
position representation.

Example 4.3.8. The Schrödinger momentum representation ρSM : W →
EndC(L2(R3)) is given by

ρSM (Xi) = q̂i = i~
∂

∂ξi
, ρSM (Yi) = p̂i = ξi,

where we have chosen ~ξ = (ξ1, ξ2, ξ3) as the coordinate of R3. This represen-
tation is equivalent to the Schrödinger position representation and the unitary
transformation that intertwines these operators is the Fourier transformation
F , i.e. ρSM ◦ F = F ◦ ρSP .

Another example of a representation which is unitary equivalent to the
Schrödinger position representation is the Fock representation on the Segal-
Bargmann space that we will encounter below during the quantisation of the
Harmonic oscillator, see equation (6.3). The unitary transformation is the Segal-
Bargman transform which we will define in Subsection 6.3.3.
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4.4 The Schrödinger and Heisenberg Pictures

The Schrödinger and the Heisenberg pictures of Quantum Mechanics give a way
of understanding how a quantum mechanical system evolves in time.

In the Schrödinger picture the time dependency of the system is encoded
in the wave functions. The Hamilton operator of the quantum system Ĥ is
therefore assumed to be time-independent.

Definition 4.4.1. In the Schrödinger picture, the time evolution of the wave
function ψ in a quantum system is given by the Schrödinger equation

i~
dψ

dt
= Ĥψ. (4.1)

In the following, we will assume that we can find an orthonormal basis
{ψj}j∈N of the quantum Hilbert space consisting of eigenvectors of the Hamil-

tonian operator Ĥ. This is not necessarily true for self-adjoint operators and
one should rather work with the spectral theorem to get generalised eigenspaces.
More on that topic can be found in [4] Chapters 7 and 10. If we have an eigen-
basis {ψj}j∈N with corresponding eigenvalues Ej , the time evolution of these

states is given by ψj(t) = exp(
itEj

~ )ψj , as one can verify by plugging ψj(t) into
the Schrödinger equation 4.1.
To find the basis of eigenvectors {ψj}j∈N, we will solve the following differential
equation.

Definition 4.4.2. If Ĥ is the Hamilton operator for a quantum system the
eigenvector equation

Ĥψ = Eψ, E ∈ R

is called the time-independent Schrödinger equation. A solution of this equation
is called a stationary state.

Example 4.4.3. Consider the quantum system L2(R) with the Hamiltonian

Ĥ = p̂2

2m + 1
2mω

2q̂2, where m is the mass of the particle and ω is the angular
frequency. Then the time-independent Schrödinger equation reads(

p̂2

2m
+

1

2
mω2q̂2

)
ψ = Eψ.

The stationary states are of the form

ψj(x) =
1√
2jj!

(mω
π~

) 1
4

exp

(
−mωx2

2~

)
Hj

(√
mω

~
x

)
,

where Hj are the Hermite polynomials given by

Hj(z) = (−1)jez
2 dj

dzj

(
e−z

2
)
.
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The corresponding eigenvalues are given by Ej = ~ω(j + 1
2 ). We will quantise

the Harmonic oscillator in Section 6.3 and we will find the same Hamiltonian op-
erator (up to changing the coefficients of the position and momentum operators)
in the Schrödinger position representation.

In the Heisenberg picture, the wave functions are assumed to be time inde-
pendent and the time dependency of the system is encoded in the operators.

Definition 4.4.4. In the Heisenberg picture, a time dependent quantum ob-
servable A = A(t) evolves in time according to the differential equation

dA(t)

dt
=

1

i~
[A(t), Ĥ],

where Ĥ is the Hamiltonian of the system and where [·, ·] is the commutator
given by [A,B] = AB −BA.
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Chapter 5

Prequantisation

5.1 Dirac Conditions

Paul Dirac has stated conditions to quantise a classical system. These make sure
that operators constructed during the quantisation process are valid quantum
operators corresponding to classical observables.

Dirac Quantisation Conditions. Let (X,ω,H) be a Hamiltonian system and
P be a subalgebra of the Poisson algebra (C∞(M), {·, ·}). Quantisation of the
Hamiltonian system requires to construct a complex Hilbert space H and a map
q : P → End(H) such that:

1. q(1) = λidH for a suitable constant λ 6= 0,

2. q({f, g}) = c[q(f), q(g)], f, g ∈ P, c ∈ C,

3. all q(f) are self-adjoint.

Remark 5.1.1. The map q is going to transform classical observables into quan-
tum operators. None of the Dirac conditions involve the use of a Hamiltonian.
The second condition then means that the dynamics of the quantum opera-
tors (Heisenberg picture) is going to follow the same dynamics as the classical
observables. This is where the Hamiltonian will be used.

5.2 Prequantisation Criteria

We now move on to prequantisation. The goal of this section is to explain
what properties a classical system, i.e. a symplectic manifold, should have to
be prequantisable and how to construct a prequantum line bundle.

We first discuss when a connection is said to be compatible with a Hermitian
metric on a Hermitian vector bundle. We then discuss a topological property
that closed compact surfaces have. Finally, we will see that there are two criteria
that a line bundle should fulfil to be a prequantum bundle.
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5.2.1 Compatible Connections

In this subsection, we will discuss connections compatible with Hermitian met-
rics. We will restrict the discussion to Hermitian line bundles π : L → M with
Hermitian metric h ∈ Ω0(M, (L⊗ L)∗). We will denote them with (L, h).

Definition 5.2.1. A connection ∇ on (L, h) is called compatible with h if for
all sections s, t ∈ Ω0(M,L) and all vector fields X ∈ Ω0(M,TM), we have

X.h(s, t) = h(∇Xs, t) + h(s,∇Xt).

Proposition 5.2.2. A connection ∇ on L is compatible with a Hermitian met-
ric h, if and only if the local gauge potentials (αj)j∈J with respects to local
trivialisations ϕj : L|Uj

→ Uj×C can be chosen to be purely imaginary 1-forms
αj ∈ iΩ1(M,R).

Proof. A system of local trivialisations (Uj , ϕj) can be chosen such that the
ϕj are isomorphisms of Hermitian line bundles with respect to the constant
Hermitian metric h0(·, ·) from Example 2.4.46. Now we also know that local
sections s, t ∈ Ω0(Uj , L) have the form s = fsj , t = gsj where g, f ∈ C∞(Uj)
and sj(x) = ϕ−1

j (x, 1), x ∈ Uj . Hence,

h0(s, t) = h0((x, f(x)), (x, g(x))) = f(x)g(x)

Thus

X.h0(s, t) =
(
X.f

)
g + f (X.g)

and

h0(∇Xs, t) = h0((x,X.f(x) + αj |Xf(x)), (x, g(x)))

= (X.f(x) + αj |Xf(x))g(x),

h0(s,∇Xt) = f(x)(X.g(x) + αj |Xg(x)).

Therefore the compatibility condition is equivalent to(
X.f

)
g + f (X.g) = (X.f)g + fX.g + (αj(X) + αj(X))fg.

If we restrict to real vector fields we get the condition:

0 = αj(X) + αj(X)

Thus αj has to be a purely imaginary form. The converse is clear from the
above equations.

Remark 5.2.3. From Proposition 5.2.2 we understand that the set of all con-
nections compatible with the Hermitian metric h on L is the affine space mod-
elled on iΩ1(M,R). Additionally the curvature form Ω = Curv(∇) of a connec-
tion on L compatible with a given Hermitian metric is always a purely imaginary
two form Ω ∈ iΩ2(M,R).
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5.2.2 Integrality of the Curvature

We will now discuss an integrality condition for the curvature form. First we
will relate parallel transport to an integral over the curvature form.

Definition 5.2.4. We denote the set of all loops in M based at the point x ∈M
with L(x), i.e. closed smooth curves which start and end in a fixed point x ∈M .

Proposition 5.2.5. Let S ⊆ M be an oriented compact surface embedded in
M with boundary ∂S. Let x ∈ ∂S a point in the boundary and γ ∈ L(x) a loop

parameterising the boundary. The parallel transport P̂γ : Lx → Lx along γ is
given by

P̂γ(l) = Q(γ)l, l ∈ Lx, Q(γ) = exp

(∫
S

Ω

)
.

Proof. First we note that it is sensible that the parallel transport P̂γ is given by a

complex number Q(γ) ∈ C× such that P̂γ : l 7→ Q(γ)l, since Lx is 1-dimensional.
We now have to show that Q(γ) = exp(

∫
S

Ω). It suffices to prove this result
locally, hence we can assume the line bundle to be trivial. The horizontal lift
of γ ∈ M has the form λ(t) = (γ(t), ξ(t)), t ∈ I := (t0, t1) and fulfils the
condition from Definition 2.7.41. We know from Remark 2.7.46 that the second
condition, i.e. that λ is horizontal, is equivalent to ∇γ′ξ = 0. More regorously,
this is written as (γ∗∇)∂t(ξ) = 0 1, which yields a differential equation:

0 = (γ∗∇)∂t(ξ)

= (γ∗(d− α))∂t(ξ)

= (d− γ∗α)∂t(ξ)

=< dξ, ∂t > − < γ∗α, ∂t > ξ(t)

= ξ′(t)− αγ(t) (Dγ[∂t]) ξ(t)

= ξ′(t)− αγ(t)(γ
′(t))ξ(t)

A solution to this equation is given by:

ξ(t) = cρ(t), c ∈ C,

ρ(t) = exp

(∫ t

t0

αγ(s)(γ
′(s))ds

)
= exp

(∫
I

γ∗(α)

)
The constant c is given by the initial condition, i.e. c = ξ(t0). The integral can
be written as ∫

I

γ∗(α)
(1)
=

∫
γ(I)

α =

∫
∂S

α
(2)
=

∫
S

dα
(3)
=

∫
S

Ω,

1We will not define the pullback connection in full generality, however in a local trivialisa-
tion the pullback connection is given by γ∗(d− αj) = d− γ∗(αj).
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where we used the definition of the integral for (1), Stokes theorem for (2) and

Remark 2.8.3 for (3). Now P̂γ(x, z) = (x, zρ(t1)) = ρ(t1)(x, z) = Q(γ)(x, z),
where z = ξ(t0), l = (x, z) ∈ Lx and Q(γ) = ρ(t1) = exp(

∫
S

Ω).

Now with this proposition it is possible to show the following integrality
condition.

Proposition 5.2.6. Let (L,∇) be a line bundle with connection. Then the
curvature form Ω = Curv(∇) satisfies the integrality condition:∫

Σ

Ω ∈ 2πiZ

for every oriented closed surface Σ ⊆M .

Recall that by Definition a closed manifold is a compact manifold without
boundary.

Proof (Sketch). Let (Uj , ϕj)j∈J be the system of local trivialisations with lo-
cal connection forms {αj}j∈J . Let Σ be an oriented compact surface smoothly
embedded into M . We can find a simple closed smooth curve γ dividing Σ
into two parts S, S′ such that S is an oriented compact surface with bound-
ary ∂S parametrized by γ, S′ is another compact surface with boundary ∂S′

parametrized by γ−, and S ∪ S′ = Σ, S ∩ S′ = ∂S = ∂S′. Let us first assume
that Σ ⊆ Uj for some j. Fix x ∈ ∂S and consider γ ∈ L(x), then the parallel
transport along γ from Proposition 5.2.5 is given by

Q = exp

(∫
γ

αj

)
= exp

(∫
S

Ω

)
,

and the parallel transport along γ− is given by

Q− = exp

(∫
γ−
αj

)
= exp

(∫
S′

Ω

)
.

Now from the first point of Definition 2.7.4, we know that P̂−1
γ = P̂γ− . Therefore,

the following holds

1 = Q−Q = exp

(∫
S′

Ω

)
exp

(∫
S

Ω

)
= exp

((∫
S′

Ω +

∫
S

Ω

))
= exp

(∫
Σ

Ω

)
.

Thus
∫

Σ
Ω ∈ 2πiΣ. More generally we could partition Σ into pieces which are

in suitable Uj ’s, i.e. Σ =
⋃
j∈J Σ ∩ Uj and the following would still hold

Q = exp

(∫
S

Ω

)
, Q− = exp

(∫
S′

Ω

)
.
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5.2.3 Prequantisation Criteria

We finally discuss the prequantisation criteria.

Definition 5.2.7. A set of prequantum data for (M,ω) is a triple (L, h,∇) con-
sisting of a Hermitian line bundle (L, h) equipped with an h-compatible connec-
tion ∇ satisfying the prequantum condition Curv(∇) = −iω. The line bundle
L is called the prequantum line bundle and ∇ the prequantum connection.

Now we want to find conditions on (M,ω) such that prequantum data exists.

Definition 5.2.8. A differential 2-form β on the smooth manifold M is integral
if
∫

Σ
β ∈ Z for all embedded closed surface Σ ⊆M .

Definition 5.2.9. A symplectic manifold (M,ω) is said to be prequantisable if
ω
2π is integral.

This definition is motivated by the following theorem.

Theorem 5.2.10. A symplectic manifold (M,ω) is prequantisable if and only if
it admits prequantum data. In other words there exists a Hermitian prequantum
line bundle (L, h) and a prequantum connection ∇ if and only if ω

2π is integral.

Remark 5.2.11. By Proposition 5.2.6, the integrality of ω/2π is necessary
because, if Σ is an embedded closed surface:∫

Σ

ω

2π
=

∫
Σ

iΩ

2π
=

i

2π

∫
Σ

Ω ∈ i

2π
2πiZ = Z

We will not prove the other direction of the theorem. A proof can be given
using Čech cohomology, which is explained in [2], Chapters 9 and 10.

Remark 5.2.12. To summarise, we will have to check the following two condi-
tions to know if a Hermitian line bundle (L, h) with connection ∇ is a prequan-
tum bundle for a symplectic form ω on M :

1. The curvature Curv(∇) satisfies the prequantisation condition

Curv(∇) = −iω.

2. The connection ∇ is compatible with the Hermitian metric

X.h(s, t) = h(∇Xs, t) + h(s,∇Xt), (5.1)

for all sections s, t ∈ Ω0(M,L) and all vector fields X ∈ Ω0(M,TM).

5.3 Constructing the Prequantum Hilbert Space

We will now discuss how to construct a prequantum Hilbert space out of sections
on a prequantum line bundle and how to construct prequantum operators on
the Hilbert space. We finally summarise what the prequantisation process is.
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Proposition 5.3.1. Let (L, h,∇) be a set of prequantum data for the 2n-

dimensional symplectic manifold (M,ω). The space H̃ := {s ∈ Ω0(M,L) |∫
M
h(s, s)µ < ∞} is an infinite dimensional C-vector space equipped with the

inner product < · | · >:

(s, t) 7→< s | t >:=

∫
M

h(s, t)µ,

where µ denotes the Liouville form ω∧n

n! .

Proof. It is clear that H̃ forms a vector space over C under the operation:

(s1 + zs2)(x) = s1(x) + zs2(x), s1, s2 ∈ Ω0(M,L), z ∈ C, x ∈M.

We can verify that < · | · > is indeed an inner product, i.e. we have to show
that it is sesquilinear, Hermitian and positive-definite. This follows directly
from the fact that the Hermitian metric h is itself sesquilinear, Hermitian and
positive-definite.

Recall that a metric space is complete if every Cauchy sequence is convergent.
The C-vector space H̃ is a pre-Hilbert space, because it is not complete for the
metric induced by the inner product:

(d(s, t))2 =< s− t | s− t > . (5.2)

We denote with H the completion of the pre-Hilbert space H̃ with respect to
d(·, ·). This is the Hilbert space of the prequantisation of (M,ω) with respect
to (L, h,∇). We can then define prequantum operators that act on H, as in the
following proposition.

Proposition 5.3.2. For any classical observable f ∈ C∞(M) we define an
operator

f̂ = µf + i∇Xf
,

where µf is the multiplication from the left with the function f . The assignment

q(f) := f̂ satisfies the first two Dirac quantisation conditions from Section 5.1.

Remark 5.3.3. Note that the operator f̂ is only going to be defined on some
suitable domain D ⊆ H. Indeed, the multiplication by f need not satisfy square
integrability and ∇X is only defined on smooth sections. We will however not
determine the biggest domain D where it is defined.

Proof. The first criterion is clear with λ = 1.
For the second one, let f, g ∈ C∞(M) be classical observables. The prequanti-
sation criterion tells us that the curvature will be equal to −iω, hence:

[∇Xf
,∇Xg

]−∇[Xf ,Xg] = Curv(∇) = −iω(Xf , Xg).

65



Using the fact that ω(Xf , Xg) = {f, g} and that [Xf , Xg] = −X{f,g} we get:

[∇Xf
,∇Xg

] = −∇X{f,g} − i{f, g}. (5.3)

The second equation that will be needed in the calculation is the following. Let
s be any section of the prequantum line bundle, then we find:

[µf ,∇Xg
]s = µf∇Xg

s−∇Xg
(fs)

= f∇Xg
s− (Xg.f)s− f∇Xg

s

= −(Xg.f)s = −{f, g}s,
(5.4)

where we have used the Leibniz rule and that Xg.f = {f, g}. Analogously we
find

[∇Xf
, µg] = −{f, g}. (5.5)

We now test if the second Dirac condition is fulfilled:

[f̂ , ĝ] = [µf + i∇Xf
, µg + i∇Xg

]

= (i)2[∇Xf
,∇Xg ] + [µf , µg] + i([µf ,∇Xg ] + [∇Xf

, µg])

(1)
= −(−∇X{f,g} − i{f, g})− 2i({f, g})
= ∇X{f,g} − i{f, g}
= (−i)(µ{f,g} + i∇X{f,g})

= (−i){̂f, g},

where we have used equation 5.3, 5.4 and 5.5 in (1). We have checked that the

second Dirac quantisation [f̂ , ĝ] = c{̂f, g} is fulfilled with c = −i.

Proposition 5.3.4. The operator f̂ from Proposition 5.3.2 is symmetric, i.e.:

< f̂s1 | s2 >=< s1 | f̂ s2 >,

where s1, s2 are defined on suitable domains.

Remark 5.3.5. We haven’t discussed the Lie derivative in the Differential
geometry background Chapter as we have (and will not) use it much for the
quantisation purpose. We will however use it in the proof of Proposition 5.3.4.
We therefore define the Lie derivative for differential forms and give without
proof a few of its properties. Let k ∈ N. First, we define the interior product
ιX : Ωk(M) → Ωk−1(M) by setting (ιXω)(X1, ..., Xk−1) := ω(X,X1, ..., Xk−1)
for X,X1, ..., Xk−1 ∈ Ω0(M,TM). The interior product fulfils the following
property for α ∈ Ωk(M), β ∈ Ωl(M), k, l ∈ N and X ∈ Ω0(M,TM):

ιX(α ∧ β) := ιXα ∧ β + (−1)kα ∧ ιXβ. (5.6)

We can now define the Lie derivative LX : Ωk(M,TM) → Ωk(M,TM) with
respect to a vector field X via the Cartan formula:

LX = d ◦ ιX + ιX ◦ d. (5.7)

The Lie derivative has the following properties:
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1. LX(α ∧ β) = LXα ∧ β + α ∧ LXβ (Leibniz)

2. LX(α) = X.α for α ∈ Ω0(M) ∼= C∞(M)

Proof (Proposition 5.3.4). We first want to show that

(Xf .h(s1, s2))µ = LXf
(h(s1, s2)µ), (5.8)

where µ = ω∧n

n! is the Liouville measure and h(·, ·) is the Hermitian metric on
L. We compute:

LXf
(h(s1, s2)µ)

(1)
= LXf

(h(s1, s2))µ+ h(s1, s2)LXf
µ

(2)
= (Xf .h(s1, s2))µ+ h(s1, s2)LXf

µ,

where we have used the first property of the Lie derivative from Remark 5.3.5
for (1) and the second property for (2). We see that we now only have to show
that LXf

µ vanishes. Before doing so, we calculate the following:

ιXf
ω∧n

(1)
= (ιXf

ω) ∧ ω∧n−1 + (−1)2ω ∧ (ιXf
ω∧n−1)

(2)
= dfω ∧ ω∧n−1 + ω ∧ df ∧ ω∧n−2 + · · ·+ ω∧n−1 ∧ df
(3)
= ndf ∧ ω∧n−1,

(5.9)

where we have used equation (5.6) for (1), the fact that ιXf
ω = ω(Xf , ·) = df

according to Remark 3.0.4 for (2) and Remark 2.5.26 for (3). We can now
compute:

LXf
µ

(1)
= d(ιXf

µ) + ιXf
(dµ)

(2)
= d(ιXf

µ)

=
d(ιXf

ω∧n)

n!
(3)
= d

(
df ∧ ω∧n−1

(n− 1)!

)
(4)
= 0,

where we have used Cartan formula (5.7) in (1), Remark 2.5.31 in (2), equation
(5.9) for (3) and Remark 2.5.31 again as well as d2 = 0 for (4).
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Finally we can prove the desired result. We compute:

< f̂s1 | s2 > =

∫
M

h(f̂ s1, s2)µ

=

∫
M

h(fs1 + i∇Xf
s1, s2)µ

(1)
=

∫
M

iXf .h(s1, s2)µ+

∫
M

h(s1, i∇Xf
s2)µ+ h(s1, fs2)µ

(2)
=

∫
M

iLXf
(h(s1, s2)µ) +

∫
M

h(s1, f̂s2)µ

(3)
= i

(∫
M

d ◦ ιXf
(h(s1, s2)µ) +

∫
M

ιXf
◦ d(h(s1, s2)µ)

)
+

∫
M

h(s1, f̂s2)µ

(4)
=

∫
M

h(s1, f̂s2)µ

=< s1 | f̂ s2 >,

where we have used the compatibility condition from Definition 5.2.2 for (1),
the result (5.8) for (2), Cartan formula (5.7) in (3) and Stokes’ Theorem as well
as Remark 2.5.31 for (4).

Remark 5.3.6. In the finite dimensional case, a symmetric operator as in
Proposition 5.3.4 is a self-adjoint operator. However, this is not the case on
an infinite dimensional vector space. Recall from section 4.1, that on a Hilbert
space, an operator is self adjoint if it has the same domain of definition as its
adjoint operator and if it coincides with its adjoint on its domain of definition.
Since f̂ is an unbounded operator on a Hilbert space, the fact that f̂ is symmetric
doesn’t imply that it is self-adjoint. The interested reader can find more on that
topic in [4].
Nevertheless if for a smooth function f ∈ C∞(M) its Hamiltonian vector field

Xf ∈ Ω0(M,L) is complete on M , one can show that the operator f̂ is a well-
defined self-adjoint operator:

f̂ : H → H.

Thus all the Dirac conditions are fulfilled for such an operator, i.e. f̂ is a
quantum operator.
The proof that f̂ as above is self-adjoint is based on Stone’s theorem, i.e. one
should show that f̂ is the infinitesimal generator of a strongly continuous one-
parameter unitary group on H (see Proposition 9.5 in [2] and Theorem 10.15 in
[4]).

Remark 5.3.7. To summarise, the prequantisation process is the following. We
have to construct a Hermitian line bundle with connection ∇ on a symplectic
manifold M such that the two conditions from Remark 5.2.12 are satisfied. We
then have to build the pre-hilbert space H̃ out of sections of the prequantum
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line bundle (L, h,∇) and complete it with respect to the metric (5.2). We can
then construct prequantum operators on the prequantum Hilbert space which
correspond to classical observables as in Proposition 5.3.2.
The constructed prequantum Hilbert space is however too big. Indeed, some of
the sections of the prequantum line bundle depend on the whole phase space.
In particular, some of them depend on position and momentum simultaneously
which is forbidden by Heisenberg uncertainty principle. We will therefore have
to introduce the concept of polarisation (see next Chapter). We are going to
build our quantum Hilbert space out of polarised sections of the prequantum
Hilbert space.

5.4 The 2-dimensional Flat Example - Prequan-
tisation

We will now proceed with the prequantisation of the trivial line bundle π : L→
M on the 2-dimensional symplectic manifold (M = R2, ω) from Example 2.6.5.
As a remainder, we define M = T ∗R with global canonical coordinates q and p.
The symplectic form is given by ω = dq ∧ dp and there is a symplectic potential
α := −pdq such that dα = ω. For the trivial line bundle L := M × C→M , we
can take the Hermitian metric to be the constant one, i.e. h0 : L× L→ C and
h0((l1, λ1), (l2, λ2)) := λ1λ2. We know from Remark 2.7.6 that any connection
on L has the form ∇ = d− β where β ∈ Ω1(M,C) is a global connection form.
We first check that ω fulfils the integrality condition from Remark 5.2.12. We
integrate ω on an arbitrary oriented, closed, compact surface Σ ⊆M :∫

Σ

ω =

∫
Σ

dα
(1)
=

∫
∂Σ

α = 0,

where we used Stoke’s Theorem for (1) and that Σ is closed. From Theorem
5.2.10, this is enough to make sure that there exists a set of prequantum data for
(M,ω). We now check that this is indeed true for a good choice of ∇. Consider
∇ := d− iα then

−iω !
= Curv(∇) = Ω = −d(iα) + (iα) ∧ (iα)

(1)
= −idα, (5.10)

where we have used Remark 2.8.3 and in (1) the wedge product for C-valued
forms which is alternating. Therefore the choice ∇ = d − iα fulfils the first
condition of Remark 5.2.12. It is also compatible with the Hermitian metric h0

since β = iα is purely imaginary (recall Proposition 5.2.2).
We conclude that the trivial Hermitian line bundle (M × C, h0) with con-

nection ∇ = d− iα on the symplectic manifold (T ∗R, dq ∧ dp) is a prequantum
line bundle.

We can now construct the prequantum Hilbert space out of sections of the
prequantum line bundle, i.e.:

H̃ :=

{
s ∈ Ω0(M,L)

∣∣∣∣ ∫
M

h0(s, s)µ <∞
}
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with inner product

(s, t) 7→< s | t >:=

∫
M

h0(s, t)µ,

where µ = ω = dq ∧ dp is the Liouville form. We can then complete it with
respect to the metric (5.2) induced by the inner product which yields the pre-
quantum Hilbert space H.

The operators f̂ are given by Proposition 5.3.6. We now calculate explicitly
the prequantum operators for f = {q, p}. We know from subsection 3.0.3 that
the Hamiltonian vector field corresponding to the classical observables q and
p are given by Xq = − ∂

∂p and Xp = ∂
∂q . Thus, using Remark 2.7.7 and the

explicit form for the prequantum connection ∇, we find:

q̂ = q + i∇Xq

= q + i(Xq − iα|Xq
)

= q − i ∂
∂p

+ (−pdq)
(
− ∂

∂p

)
= q − i ∂

∂p

p̂ = p+ i∇Xp

= p+ i(Xp − iα|Xp
)

= p+ i
∂

∂q
+ (−pdq)

(
∂

∂q

)
= p+ i

∂

∂q
− p

= i
∂

∂q
.

For completeness, we check that the operators of position and momentum
fulfil the second Dirac condition. For any s ∈ H, we compute:

[q̂, p̂]s = [q − i ∂
∂p
, i
∂

∂q
]s

= iq
∂

∂q
s+

∂

∂p

∂

∂q
s− i ∂

∂q
(qs)− ∂

∂q

∂

∂p
s

(1)
= iq

∂

∂q
s− is− iq ∂

∂q
s

= −is
= −i1̂s

= −i(dq ∧ dp)
(
− ∂
∂p ,

∂
∂q

)̂
= −iω

(
− ∂
∂p ,

∂
∂q

)̂
s

= −i{̂q, p}s,
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where we have used the symmetry of the second derivative and Leibniz for
partial derivatives in (1).

We see that the position operator has a dependency on both q and p. We
would like instead to have position and momentum operators which are only
dependent on either q or p, for example

q̂ = q, p̂ = i
∂

∂q
,

the usual position and momentum operators in quantum mechanics in the posi-
tion space representation (up to a constant). This shows explicitly why we have
to choose a polarisation, which we will discuss in the next chapter.
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Chapter 6

Quantisation

6.1 Polarisations

We will now define polarisations. We will first define real polarisations and then
complex polarisations. We finally discuss how one should use them to construct
the quantum Hilbert space and we continue our example of the flat case.
Throughout this section (M,ω) is a symplectic manifold of dimension 2n.

6.1.1 Real Polarisations

We will first define Lagrangian vector spaces and we will then generalise this
notion to manifolds. For the following discussion, let (V, ω) be a symplectic
vector space and let W ⊆ V be a subspace of V .

Definition 6.1.1. We define the symplectic orthogonal of W as

W⊥ω := {v ∈ V | ω(v, w) = 0, ∀w ∈W}.

The following proposition follows from the non-degeneracy of the symplectic
form.

Proposition 6.1.2. The dimension formula

dimW + dimW⊥ω = dimV

holds for W⊥ω the symplectic orthogonal of W .

Remark 6.1.3. We note however that the intersection of W with its symplectic
orthogonal need not be empty, i.e. W ∩W⊥ω 6= {0} in general. The following
definitions are therefore sensible.

Definition 6.1.4. The subspace W ⊆ V is

• isotropic if W ⊆W⊥ω ,
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• Lagrangian if W = W⊥ω .

We can then state the following Corollary to Proposition 6.1.2.

Corollary 6.1.5. If W is isotropic then dimW ≤ 1
2dimV . If W is Lagrangian

then dimW = 1
2dimV .

Remark 6.1.6. We note that Lagrangian can also be defined as maximally
isotropic.

We can now define real polarisations.

Definition 6.1.7. A real polarisation on M is an integrable Lagrangian distri-
bution P ⊆ TM . In other words, a real polarisation P ⊆ TM is a Lagrangian
foliation (recall Definition 2.2.57).

Remark 6.1.8. Explicitly, the condition for a foliation P ⊆ TM to be a real
polarisation is the following: ωx(X,Y ) = 0, x ∈ M, X, Y ∈ Px and no larger
subspace of TxM which contains TxM properly has this property (it is maximal
isotropic).

Proposition 6.1.9. A distribution P ⊆ TM is a real polarisation if and only
if for each x ∈ M there exists an open neighbourhood U of x and n smooth
functions f1, ..., fn ∈ C∞(U) such that:

1. The family of differentials {df1, ..., dfn} is a linearly independent family of
functions,

2. for each x ∈ U , Px = spanR{Xf1(x), ..., Xfn(x)},

3. {fj , fk} = 0, j, k ∈ {1, ..., n}.

Proof. Let P be a real polarisation. Since P is by definition an integrable
distribution, for every x ∈ M there exists an integral manifold (L, ι), i.e. a
leaf. From the implicit function theorem (see [1]) we can find n independent
smooth functions f1, ..., fn ∈ C∞(M) such that the leaves of P are locally of the
form {x ∈ U | f1(x) = c1, f2(x) = c2, ...., fn(x) = cn} with suitable constants
c1, ..., cn ∈ R and U ⊆ M an open subset. For each vector field X ∈ Ω0(U,P ),
we have X.fi = 0, i = 1, ..., n, hence

ω(Xfi , X) = dfi(X) = X.fi = 0.

Thus Xfi ∈ Ω0(U,P ), since P is Lagrangian, and Xf1 , ..., Xfn spans P locally.
Therefore we also have 0 = ω(Xfi , Xfj ) = {fi, fj}.
Conversely, the condition 0 = {fi, fj} = ω(Xfi , Xfj ) implies that P is isotropic.
Since the fi are linearly independent, the dimension of the distribution is indeed
n and the leaves are given by {x ∈ U | f1(x) = c1, f2(x) = c2, ...., fn(x) =
cn}.

Let us now construct a real polarisation on a 2n-dimensional flat symplectic
manifold (if n = 1 we have the same setup as in Subsection 5.4).
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Example 6.1.10. Let (T ∗Rn, ω) be a 2n-dimensional symplectic manifold with
global coordinates {q1, ..., qn, p1, ..., pn} and symplectic form given by ω =

∑
k dqk∧

dpk. We define the vertical distribution P ⊆ T (T ∗R) as

P := spanR

{
∂

∂pi

∣∣∣∣ 1 ≤ i ≤ n
}
.

The globally defined n independent smooth functions q1, ..., qn ∈ C∞(M) are
in Poisson involution, that is they generate a commutative Poisson subalgebra.
The span of their Hamiltonian vector fields gives P , indeed:

P = spanR

{
∂

∂pi

∣∣∣∣ 1 ≤ i ≤ n
}

= spanR {Xqi | 1 ≤ i ≤ n} ,

since we know from subsection 3.0.3 that the Hamiltonian vector field corre-
sponding to the classical observables qk is given by Xqk = − ∂

∂pk
. Therefore by

Proposition 6.1.9, P is a real polarisation and the leaves of the polarisation are
given by

{(q1, ..., qn, p1, ..., pn) ∈ T ∗Rn | qi = ci, ci ∈ C}.

With a similar argument, one can show that the horizontal distribution given
by

P := spanR

{
∂

∂qi

∣∣∣∣ 1 ≤ i ≤ n
}

= spanR {Xpi | 1 ≤ i ≤ n}

is a real polarisation.

We see that there exists a real polarisation for our flat example, however we
should note that a real polarisation need not exist in general. We therefore need
complex polarisations.

6.1.2 Complex Polarisations

We first need to define complexified tangent bundles which will be needed in
the following discussion.

Definition 6.1.11. Let V be a real vector space. The complexification of the
vector space V is given by:

V C := V ⊗R C

and the scalar multiplication is given by

λ · (v ⊗ µ) = v ⊗ λµ, µ, λ ∈ C, v ∈ V.

Remark 6.1.12. The complexified vector space V ⊗R C is isomorphic to V ⊕
iV := {v1 + iv2 | v1, v2 ∈ V }. Indeed the map V ⊗R C→ V ⊕ iV, v ⊗ 1 7→ v is
a canonical isomorphism of C-vector spaces.
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Remark 6.1.13. Since the complexification and the isomorphism from 6.1.12
do not involve a choice of basis, the Metatheorem implies that the same con-
struction holds for vector bundles and in particular for the tangent bundle TM .
Thus, its complexification TMC is the vector bundle with fibres at x ∈M given
by (TMC)x := (TxM)C = TxM ⊗R C ∼= TxM ⊕ iTxM .

Definition 6.1.14. Let V be a real vector space and V C its complexification.
There exists an R-linear involution · : V C → V C defined by

v ⊗ λ 7→ v ⊗ λ, v ⊗ λ ∈ V C = V ⊗R C,

or equivalently with v1 + iv2 ∈ V C = V ⊕ iV :

v1 + iv2 7→ v1 − iv2.

Remark 6.1.15. This involution is defined without a choice of basis. From the
Metatheorem we can use it on vector bundle and specifically on tangent bundle.
Therefore for a distribution P ⊆ TM we can use the involution fiberwise and
thus P x is defined within TxM

C.

Definition 6.1.16. Let (V, ω) be a real symplectic vector space. Its complex-
ification V C carries a complex symplectic structure ωC : V C × V C → C defined
by:

ωC(v ⊗ λ,w ⊗ µ) := ω(v, w)λµ, v ⊗ λ, w ⊗ µ ∈ V C = V ⊗R C,

or equivalently for v1 + iv2, w1 + iw2 ∈ V ⊕ iV :

ωC(v1 + iv2, w1 + iw2) := ω(v1, w1)− ω(v2, w2) + i(ω(v1, w2) + ω(v2, w1)).

Remark 6.1.17. In the complexification, non-degeneracy for ωC means that
for v ∈ V , the map

V C →
(
V C)∗

v 7→ ωC
v = ωC(v, ·)

is an isomorphism.

Remark 6.1.18. From the Metatheorem, this can again be extended fiberwise
on TMC. We can thus make sense of isotropic and Lagrangian distributions
P ⊆ TMC, using the complex symplectic form.

Definition 6.1.19. Let (M,ω) be a symplectic manifold. A complex polarisa-
tion P of (M,ω) is a foliation P ⊆ TMC such that

• Px ⊆ TxMC is Lagrangian for all x ∈M

• the distribution Dx := Px ∩ P x ∩ TxM has constant rank.

The complex polarisation P is said to be real if Dx = TxM for all x ∈ M and
pseudo-Kähler (or purely complex) if Dx = {0} for all x ∈M .
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Remark 6.1.20. Equivalently we could define a pseudo-Kähler polarisation
as being a complex polarisation such that the Hermitian form h : P × P →
C, (X,Y ) 7→ h(X,Y ) = −iωC(X,Y ) is a non-degenerate Hermitian form. If
further, h is positive definite we say that the polarisation is Kähler. The con-
dition for the conjugate polarisation to be Kähler is that the Hermitian form
h : P × P → C, (X,Y ) 7→ h(X,Y ) = iωC(X,Y ) is a non-degenerate positive
definite Hermitian form.

Example 6.1.21. Let us construct the Kähler polarisation for the same sym-
plectic manifold as in Example 6.1.10, i.e. M = T ∗Rn with symplectic form
ω =

∑
k dqk ∧ dpk. We can define a holomorphic atlas on T ∗Rn using a

single global chart ϕ : T ∗Rn → Cn, (q1, ..., qn, p1, ..., pn) 7→ (z1, ..., zn), where

zj := 1√
2
(qj + ipj) and we define P as the pointwise span of

(
∂
∂zj

)
j∈J

, where

∂
∂zj

:= 1√
2

(
∂
∂qj
− i ∂

∂pj

)
and J = {1, ..., n}. The conjugate distribution P is the

pointwise span of
(

∂
∂zj

)
j∈J

, where ∂
∂zj

:= 1√
2

(
∂
∂qj

+ i ∂
∂pj

)
.

By Frobenius theorem 2.2.56, the distribution P ⊆ TMC defines a foliation
because it is involutive and has constant rank. Indeed, we compute with
Y =

∑
j yj

∂
∂zj
∈ P and W =

∑
j wj

∂
∂zj
∈ P as well as a smooth function

f ∈ C∞(M)

[Y,W ]f =
∑
jk

yj
∂

∂zj

(
wk

∂

∂zk
f

)
− wk

∂

∂zk

(
yj

∂

∂zj
f

)
=
∑
jk

yj
∂wk
∂zj

∂

∂zk
f − wk

∂yj
∂zk

∂

∂zj
f

=
∑
jk

(
yj
∂wk
∂zj
− wj

∂yk
∂zj

)
∂

∂zk
f.

Thus [Y,W ] ∈ P .
Now we want to show that it is Lagrangian. The 1-forms dzk ∈ Ω1(M,C) =

Ω0(M, (TMC)∗) are defined as the dual to
(

∂
∂zj

)
j∈J

, i.e. dzk

(
∂
∂zj

)
:= δkj and

dzk

(
∂
∂zj

)
:= 0. Similarly dzk are defined via dzk

(
∂
∂zj

)
:= 0 and dzk

(
∂
∂zj

)
:=

δkj . We compute the following:

dzj∧dzj = d

(
qj + ipj√

2

)
∧d
(
qj − ipj√

2

)
= − i

2
dqj∧dpj+

i

2
dpj∧dqj = −idqj∧dpj .

Thus the formula for the C-bilinear extension of the symplectic form is ωC ∈
Ω2(M,C) = Ω0(M,Λ2(TMC)∗) as ωC = i

∑
j dzj ∧ dzj . We can now input

elements of the foliation P which yield:

ωC
(

∂

∂zj
,
∂

∂zl

)
= i
∑
k

dzk ∧ dzk
(

∂

∂zj
,
∂

∂zl

)
= 0.
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Finally, the complex polarisation P is pseudo-Kähler. Indeed, we prove with
the following calculation that TMC = P ⊕ P , which implies P ∩ P = {0} for
dimensions reasons. Let X be an element of TMC. From Remark 6.1.13, X can
be uniquely written as a sum X = Y + iZ, where X,Y ∈ TM . Let us write Y
and Z in global coordinates as Y =

∑
j aj

∂
∂qj

+bj
∂
∂pj

and Z =
∑
j cj

∂
∂qj

+dj
∂
∂pj

.

We can then write the sum as:

X = Y + iZ

=
∑
j

aj
∂

∂qj
+ bj

∂

∂pj
+
∑
k

ck
∂

∂qk
+ dk

∂

∂pk

=
∑
j

(aj + icj)
∂

∂qj
+ (bj + idj)

∂

∂pj

=
∑
j

aj + icj√
2

(
∂

∂zj
+

∂

∂zj

)
+ i

bj + idj√
2

(
∂

∂zj
− ∂

∂zj

)
.

This shows that any X ∈ TM can be uniquely written as a sum of elements
of P and P , since the coefficients aj , bj , cj , dj were unique. The polarisation is
even Kähler, because

h(
∂

∂zj
,
∂

∂zj
) = iωC(

∂

∂zj
,
∂

∂zj
)

= −
∑
k

dzk ∧ dzk(
∂

∂zj
,
∂

∂zj
)

= dzj(
∂

∂zj
)dzj(

∂

∂zj
) ≥ 0.

An alternative definition of a Kähler polarisation is via Kähler manifold. A
Kähler manifold then naturally induces a Kähler polarisation. To define such a
manifold, we first need to define an almost complex structure.

Definition 6.1.22. A complex structure on a real vector space V is a linear
transformation J : V → V such that J2 = −Id.

Remark 6.1.23. Necessarily the dimension of V is even, since

det(J)2 = det(J2) = det(−Id) = (−1)dim(V ).

Example 6.1.24. We can find a complex structure on R2n by using the iso-
morphism

R2n → Cn

(xj , yj)j∈I 7→ (xj + iyj)j∈I ,

where I = {1, ..., n}. Now the complex structure on Cn is given by the map
J : Cn → Cn, v 7→ iv, i.e. (xj + iyj)j∈I 7→ (−yj + ixj)j∈I . Thus the matrix of
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J in the canonical basis of R2n is

J =

(
0 −IdRn

IdRn 0

)
,

and it clearly holds that J2 = −IdR2n .

Definition 6.1.25. An almost complex structure J on a manifold M is an
almost complex structure on each fibre TxM which varies smoothly with x ∈M ,
i.e. J ∈ Ω0(M,TM ⊗ T ∗M), J2 = −IdTM .

Remark 6.1.26. We note that any Kähler Polarisation induces an almost com-
plex structure on (M,ω). Indeed, any element v ∈ TxM can be written as
v = Z(v) + Z(v) where Z(v) ∈ P , since TxM

C = P ⊕ P . Therefore the map
defined by Jv := iZ(v) − iZ(v) is R-linear and satisfies J2 = −Id. We will
see later that J endows (M,ω) with a structure of a Kähler manifold, defined
below.

Remark 6.1.27. An almost complex structure is said to be integrable if around
every point x ∈ M there exists local holomorphic coordinates which glued to-
gether gives a holomorphic atlas endowing M with a complex structure which
induces the almost complex structure, i.e. in local holomorphic coordinates
zj = xj + iyj , j ∈ {1, ..., n} the following holds:

J

(
∂

∂xj

)
=

∂

∂yj
, J

(
∂

∂yj

)
= − ∂

∂xj
.

The Newlander–Nirenberg theorem states that an almost complex structure J
is integrable if and only if for all vector fields TxM :

NJ(X,Y ) = [JX, JY ]− J [JX, Y ]− J [X, JY ]− [X,Y ] = 0.

We can now define a Kähler manifold.

Definition 6.1.28. A Kähler manifold is a manifold M with a symplectic
structure ω and an integrable almost complex structure J such that ω and J
are compatible in the following sense:

g(X,Y ) := ω(X, JY ), X, Y ∈ Ω0(M,TM)

is a non-degenerate, positive-definite, symmetric tensor. We denote a Kähler
manifold with the triple (M,ω, J).

Remark 6.1.29. The fact that the symplectic form ω and the almost complex
structure J are compatible as in Definition 6.1.28 implies that J is a linear
symplectic transformation, i.e.

ω(JX, JY ) = ω(X,Y ), X, Y ∈ Ω0(M,TM).

Indeed, we can compute the following:

ω(JX, JY ) = g(JX, Y )
(1)
= g(Y, JX) = ω(Y, J2X) = ω(X,Y ),

where we have used that g is symmetric in (1).
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Proposition 6.1.30. Suppose that (M,ω, J) is a Kähler manifold, then the
eigenbundles of J are Kähler polarisations. In other words, there exists a natural
Kähler polarisation P defined pointwise as the eigenspace of Jx : TxM

C →
TxM

C corresponding to the eigenvalue i and the conjugate polarisation P is
given by the eigenspace corresponding to the eigenvalue −i.

Proof (Sketch). It automatically follows that P ∩ P = {0}, since P and P
are eigenbundles corresponding to different eigenvalues. Let us check that the
distribution P is involutive. Using Remark 6.1.27, We compute for X,Y ∈ P :

0 = NJ(X,Y ) = −[X,Y ]− iJ [X,Y ]− iJ [X,Y ]− [X,Y ].

Rearranging this equation yields

J [X,Y ] = i[X,Y ]

which shows that P is involutive.
Finally we verify if P is Lagrangian. This follows from the dimension of P and
the following calculation, for all X,Y ∈ P :

ω(X,Y ) = ω(JX, JY ) = ω(iX, iY ) = −ω(X,Y ),

thus ω(X,Y ) = 0.

6.1.3 The Quantisation Process

Now that we understand polarisations, we can finalise our discussion about
quantisation.

Definition 6.1.31. Given a polarisation on a symplectic manifold (M,ω), the
polarised functions are the functions f ∈ C∞(M) with

X.f = 0

for all X ∈ Ω0(M,P ). We denote the space of all polarised functions as C∞P (M).

Remark 6.1.32. We note that X.f = 0 implies that [Xf , X] ∈ Ω0(M,P ).
Indeed we calculate for all X ∈ Ω0(M,P ):

0 = X.f = df(X)
(1)
= ω(Xf , X),

where we have used Remark 3.0.4 in (1). This calculation shows that Xf is
also an element of Ω0(M,P ) since P is Lagrangian. Because P is additionally
involutive, it follows that [Xf , X] ∈ Ω0(M,P ) for all X ∈ Ω0(M,P ).

Definition 6.1.33. Given a polarisation on a symplectic manifold (M,ω), the
polarised sections in a line bundle π : L→M with connection ∇ are the sections
s ∈ Ω0(M,L) with

∇Xs = 0

for allX ∈ Ω0(M,P ). We denote the space of all polarised sections as Ω0
P (M,L).
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Given a prequantum Hilbert space H as constructed in the prequantisation
process (see Remark 5.3.7), we can define a suitable polarisation P on the sym-
plectic manifold M . We then construct the quantum Hilbert space HP as the
polarised sections of the prequantum Hilbert space, i.e. HP is the completion
of

H̃P := H ∩ Ω0
P (M,L).

By doing this we can avoid violating the Heisenberg uncertainty principle as the
chosen polarisation will enable us to rule out the sections which are dependent on
both position and momentum, as we will make explicit in the flat 2-dimensional
example. The next propositions will show that polarised classical observables
induce quantum operators on the quantum Hilbert space HP .

Proposition 6.1.34. The space of polarised functions is closed under the Pois-
son bracket, i.e. {f, g} ∈ C∞P (M) for any f, g ∈ C∞P (M).

Proof. With X ∈ Ω0(M,P ) and f, g ∈ C∞P (M), we show that the Poisson
bracket {f, g} is in C∞P (M). We compute:

X.{f, g} (1)
= X.(Xg.f)

(2)
= X.(Xg.f)−Xg.(X.f) +Xg.(X.f)

(3)
= [X,Xg].f

(4)
= 0,

where we have used equation (3.5) in (1), we have added 0 in (2), we have used
that X.f = 0 for f ∈ C∞P (M) in (3) and Remark 6.1.32 in (4).

Proposition 6.1.35. For any polarised classical observable f ∈ C∞P (M), the
prequantum operator of Proposition 5.3.2 acts on the space of smooth functions
of the prequantum line bundle preserving polarised ones.

Proof. From Proposition 5.3.2 and Proposition 5.3.4, we already know that f̂
restricted to the polarised sections fulfils the first two Dirac conditions and that
it is symmetric. We only need to show that ∇X f̂ s = 0 for X ∈ Ω0(M,P ),
f ∈ C∞P (M) and s ∈ Ω0

P (M,L). First, let us note that the condition that the
curvature equals −iω is equivalent to:

−iω(X,Xf )s = [∇X ,∇Xf
]s−∇[X,Xf ]s,

where we have used the definition of the curvature from Definition 2.8.2. Re-
arranging the terms and using the fact that s ∈ Ω0

P (M,L) as well as [X,Xf ] ∈
Ω0(M,P ) yields:

∇X(∇Xf
s) = −iω(X,Xf )s+∇Xf

(∇Xs) +∇[X,Xf ]s

= −iω(X,Xf )s.

We also have from Remark 3.0.4 that

−iω(X,Xf )s = iω(Xf , X)s = i(X.f)s,
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and thus we find:
∇X(∇Xf

s) = i(X.f)s. (6.1)

With this result we can now compute the following:

∇X(f̂ s) = ∇X(fs+ i∇Xf
s)

(1)
= (X.f)s+ f∇Xs+ i∇X(∇Xf

s)

(2)
= (X.f)s− (X.f)s = 0,

where we have used Leibniz in (1) and equation 6.1 in (2).

Remark 6.1.36. We have now finally constructed the desired quantum Hilbert
space out of square integrable polarised sections equipped with quantum oper-
ators which preserve polarised sections (e.g. prequantum operators associated
to polarised functions). However in doing so a few non-trivial issues should be
discussed in general. The space of polarised sections could be empty, because
there could be no polarised sections which are square sumable. A way around
this issue is to define a measure on M/D (which however need not even be
Hausdorff) and then redefine the quantum Hilbert space as sections on M/P
with inner product defined by integrating against this measure. We will show
this in the 2-dimensional case. In general, to overcome these difficulties one
could introduce half densities and distributional sections. The interested reader
can find more on that topic in [7] and [2].

6.2 The 2-dimensional Flat Example - Quanti-
sation

We now continue our discussion on the 2-dimensional flat symplectic manifold
from Example 5.4. We will use real polarisation in this example and Kähler
polarisations later on to quantise the n-dimensional Harmonic oscillator.
First recall from Example 6.1.10 that we can define the vertical polarisation on
T ∗R as the distribution defined by

P = spanR{
∂

∂p
}.

We can now use this polarisation to define our quantum Hilbert space. The
polarised section s of the prequantum line bundle are given by s = fs1, where
f ∈ C∞(M) and s1 is the constant section s1(x) = (x, 1), which satisfy:

∇ ∂
∂p
s = 0.
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Since we already know the form of the prequantum connection ∇ = d − iα =
d+ ipdq we can compute:

∇ ∂
∂p
fs1 =

∂f

∂p
s1 + ipdq(

∂

∂p
)fs1

=
∂f

∂p
s1

Thus our quantum Hilbert space HP will be composed of the sections with
coefficient function satisfying the following differential equation:

∂f

∂p
= 0. (6.2)

In words, equation (6.2) means that the sections in our Hilbert space cannot
have any explicit dependency on momentum, i.e. the coefficient functions are
f(p, q) = f(q).
The classical observable q induces a quantum operator q̂ from Proposition 6.1.35.
Indeed, q belongs to C∞P (M) since it is clear that ∂

∂p (q) = 0. Now we already

know that q̂ = q − i ∂∂p from Example 5.4. Thus if we restrict the operator q̂

to Hp, i ∂∂p will vanish as equation (6.2) states. Therefore we end up with the

quantum operator q̂ = q as desired.
Even though the classical observable p doesn’t belong to C∞P (M) as ∂

∂p (p) = 1, it

also induces a quantum operator p̂. Indeed, we already know from Example 5.4
that its corresponding quantum operator p̂ is given by p̂ = i ∂∂q which preserves
polarised sections, since for any fs1 ∈ HP

∇ ∂
∂p

(p̂(fs1)) = ∇ ∂
∂p

(
i
∂f

∂q
s1

)
=

∂

∂p

(
i
∂f

∂q

)
s1 − pdq

(
∂

∂p

)
∂f

∂q
s1

(1)
= 0

where we have used the symmetry of the second derivative and dq
(
∂
∂p

)
= 0 in

(1). These two operators fulfil the commutation relation [q̂, p̂] = −i, which is
the canonical commutation relation from Quantum mechanics up to a constant.

We now have the desired polarised sections of the prequantum line bundle
and the correct quantum operators for position and momentum which preserve
polarised sections. However, we should note that the Hilbert space HP is actu-
ally empty, since for any element fs1 of HP the integral:∫

M

h0(fs1, fs1)dq ∧ dp =

∫
R2

f(q)f∗(q)dqdp

diverges as the integral over p is unbounded. Therefore, we have to redefine
the Hilbert space as sections over the space of leaves M/P and then look for
a suitable measure on this space against which we will integrate. We already
know from Example 6.1.10 that the leaves are given by {(c, p) | c ∈ C}. The
subspace

Q := R⊕ {0} = {(q, 0) | q ∈ R} ⊆ T ∗R
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is a global transverse to the leaves and Q is diffeomorphic to M/P . We can
redefine our quantum Hilbert space out of sections whose coefficient functions
are elements of C∞P (Q,C) = C∞(Q,C). This is sensible because any section
s ∈ Ω0

P (M,L) ∼= C∞P (M,C) is uniquely determined by s|Q, its restriction on Q.
In other words the map

C∞P (M,C)→ C∞(Q,C)

s 7→ s|Q

is a diffeomorphism of C-vector spaces. Indeed, the map is injective, since s(q, p)
is uniquely defined by the initial value problem:{

∂s
∂p = 0

s(q, 0) = s|Q(q),

because of the Picard–Lindelöf theorem. A measure on M/P ∼= Q is given by
the Lebesque measure dq. We can now construct explicitly the following Hilbert
space:

H̃′P :=

{
f ∈ C∞(Q,C)

∣∣∣∣ ∫
Q

f∗fdq <∞
}

= C∞(Q,C) ∩ L2(Q,C).

Now by completing it we finally end up with the desired quantum Hilbert space:

H′P = L2(Q,C),

the Schrödinger position representation, with the operators q̂ = q and p̂ = i ∂∂q
which fulfil the canonical commutation relation.

We note that we could choose similarly the horizontal polarisation:

P := spanR{
∂

∂q
}.

We would find for the quantum operator of momentum p̂ = p and for the
quantum operator of position q̂ = i ∂∂p on the quantum Hilbert space HP . The

space of leaves would be {(0, p) | p ∈ R} and the measure on this space would
be the Lebesque measure dp. It would then yield the quantum Hilbert space
corresponding to the Schrödinger momentum representation. We recall that the
Fourier transformation isomorphically maps the position representation to the
momentum representation.

6.3 The n-dimensional Harmonic Oscillator

We will now fully describe the quantisation of the n-dimensional harmonic os-
cillator. First let us discuss the real polarisation case and then the Kähler
polarisation case.
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6.3.1 The Real Polarisation Case

We start with a flat symplectic manifold i.e. M = T ∗Rn with symplectic form
ω =

∑n
j=1 dqj ∧ dpj in Darboux coordinates qi, pi. The symplectic potential is

given by the 1-form α = −
∑n
j=1 pjdqj . In the real case, the quantum Hilbert

space with respect to the vertical polarisation P = spanR{ ∂
∂p1

, · · · , ∂
∂pn
} is the

same as the one in Example 6.2 generalised to the 2n-dimensions, i.e. H′P =
L2(Q,C) where Q = Rn ⊕ {0}. The classical Hamiltonian operator is given by

H = ‖p‖2
2m + 1

2mω
2‖q‖2 where m is the mass of the particle, ω is the angular

frequency and ‖ · ‖ is the n-dimensional Euclidian norm. The constants have
a physical meaning which is irrelevant in the process of quantisation. We can
therefore set m = ~ = ω = 1 for convenience. We write H = 1

2 (‖p‖2 + ‖q‖2).
Using equation (3.6) generalised to 2n-dimension, the Hamiltonian vector field
to the Hamiltonian H takes the form:

XH =
∑
j

∂H

∂pj

∂

∂qj
− ∂H

∂qj

∂

∂pj
=
∑
j

pj
∂

∂qj
− qj

∂

∂pj
.

We can now construct the prequantum operator analogously to what was done
for the position and momentum operators in Example 5.4. We calculate:

Ĥ = H + i∇XH

= H + i(XH − iα|XH
)

= H − i

∑
j

pj
∂

∂qj
− qj

∂

∂pj

+

(
−
∑
k

pkdqk

)∑
j

pj
∂

∂qj
− qj

∂

∂pj


=
∑
j

1

2
p2
j +

1

2
q2
j − i

(
pj

∂

∂qj
− qj

∂

∂pj

)
− p2

j

=
∑
j

−1

2
p2
j − ipj

∂

∂qj
+

1

2
q2
j + iqj

∂

∂pj
.

We note however that this operator is not a quantum operator, because Ĥ
doesn’t preserve polarised sections. Indeed, Ĥf doesn’t fulfil the condition 6.2
as we check in the following, for any f ∈ H′P :

∂

∂pl
(Ĥf) =

∂

∂pl

∑
j

−1

2
p2
j − ipj

∂

∂qj
+

1

2
q2
j + iqj

∂

∂pj

 f

(1)
= −plf − ipl

∂2f

∂plqj
(2)
= −plf,

where we have used that every term of the form ∂f
∂pk

for some k ∈ N vanishes in

(1) and we have used the symmetry of the partial derivatives in (2). The same
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problem arises with a different choice of symplectic potential or with a different
choice of polarisation. To overcome this issue, we will use Kähler polarisation
and after solving the harmonic oscillator on the complexified prequantum bun-
dle, we will come back to the space H′P with the help of the Segal-Bargmann
transform.

6.3.2 The Kähler Polarisation Case

Let us first discuss the (n = 1)-dimensional case. We will then generalise to any
n ∈ N dimension. We start again with a flat symplectic manifold i.e. M = T ∗R
with symplectic form ω = dq ∧ dp in global coordinates q, p. The Hamiltonian
of the 1-dimensional Harmonic oscillator is given by H = 1

2 (p2 + q2).
As in Example 6.1.21, we can define the holomorphic coordinates z = 1√

2
(q+ip)

and we can write the symplectic form in these coordinates as:

ωC = idz ∧ dz

and it is clear that the 1-form

αC =
i

2
(zdz − zdz)

is a potential of ωC. Since 1√
2
(q + ip) 1√

2
(q − ip) = 1

2 (q2 + p2), the Hamiltonian

of the Harmonic oscillator takes the form

HC = zz.

In the following, we will write ω, α and H, neglecting the index C.
Also from Example 6.1.21, we know that

P := spanC

(
∂

∂z

)
defines a Kähler polarisation.
The construction of the prequantum Hilbert space is analogous to what we have
done in Example 5.4. Indeed, the trivial line bundle L := M ×C equipped with
the constant Hermitian metric h0 and connection ∇ = d− iα is a prequantum
line bundle. The prequantum Hilbert space is then given by the completion of

H̃ :=

{
s ∈ Ω0(M,L)

∣∣∣∣ ∫
M

h0(s, s)µ <∞
}
,

where µ = ω = idz ∧ dz is the Liouville form.
This space is however too big and we therefore need to restrict to polarised
sections of the prequantum line bundle. We already know that the sections s ∈
Ω0(M,L) of the trivial line bundle are given by coefficient functions f ∈ C∞(M)
and the constant section s1 ∈ Ω0(M,L), i.e. s(x) = f(x)s1(x) = f(x)(x, 1) =
(x, f(x)), x ∈M . The polarised sections are therefore the ones which satisfy:

∇ ∂
∂z
fs1 =

(
∂

∂z
f − iα| ∂

∂z
f

)
s1 = 0
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We can write this condition as:

∂f

∂z
− i
(
i

2
(zdz − zdz)

)(
∂

∂z

)
f =

∂f

∂z
+

1

2
zf = 0.

We can solve this differential equation with separation of variable:

df

f
= −1

2
zdz ⇔ log(f) = −zz

2
+ k,

for some branch of the logarithm and k some holomorphic function, since it
needs to fulfil ∂k

∂z = 0. Since the exponential function is holomorphic and the
composition of holomorphic functions is again holomorphic, we understand that
the coefficient functions need to be of the form:

f = ϕ exp

(
−|z|

2

2

)
,

where ϕ ∈ OM is a holomorphic function, i.e. ∂ϕ
∂z = 0. Thus the polarised

sections s ∈ Ω0
P (M,L) are of the form s = ϕse where ϕ ∈ OM and se :=

exp
(
− |z|

2

2

)
s1. Thus there is an obvious isomorphism between the space of

polarised section Ω0
P (M,L) and OM which is given by ϕse 7→ ϕ, since se is

a canonical choice of global nowhere-vanishing polarised section. The inner
product on Ω0(M,L) induces an inner product on the space of holomorphic
functions OM . Indeed, let fse, gse ∈ Ω0

P (M,L) be two polarised sections, we
can then compute:

< fse | gse > =

∫
M

h0(fse, gse)dq ∧ dp

=

∫
M

fgh0(se, se)dq ∧ dp

=

∫
M

fg exp
(
−|z|2

)
dq ∧ dp.

We can therefore define on OM the following inner product (· | ·) induced by
the inner product < · | · >:

(f | g) = c

∫
C
fg exp

(
−|z|2

)
idz ∧ dz,

where c ∈ R is some multiplicative constant. We fix c = 1
2π such that (1 | 1) = 1,

indeed:

c

∫
C

exp

(
−q

2 + p2

2

)
dq ∧ dp =

1

2π

(∫
R

exp

(
−q

2

2

)
dq

)(∫
R

exp

(
−p

2

2

)
dp

)
=

1

2π
(
√

2π)2 = 1.
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Hence, we can identify the quantum Hilbert space as the space of holomorphic
functions which are square integrable with respect to the measure exp

(
−|z|2

)
dz∧

dz, i.e.:

HP :=

{
ϕ ∈ OM

∣∣∣∣ i

2π

∫
C
|ϕ|2 exp(−|z|2)dz ∧ dz <∞

}
. (6.3)

This space is called the Segal-Bargmann space. This space is already complete,
since it is closed in L2(M,L), the completion of the space of square integrable
sections Ω0(M,L). The proof of this fact can be found in [4]. Because the
Segal-Bargmann space is closed, we can write L2(M,L) = HP ⊕ (HP )⊥, with
respect to the inner product < · | · >. We can therefore define a projection map
πO : L2(M,L)→ HP , which we will use below.
We now construct the operators on HP corresponding to z, z and the Hamil-
tonian of the 1-dimensional harmonic oscillator. We first need to construct
the Hamiltonian vector field XC associated to any classical observable C. The
matrix representation of the symplectic form in the complex frame is given by:

ω =

(
0 i
−i 0

)
.

Using equation (3.6) and the matrix of ω, we can write:

XC = i

(
∂C

∂z

∂

∂z
− ∂C

∂z

∂

∂z

)
Thus for z and z, we get:

Xz = i
∂

∂z

Xz = −i ∂
∂z
,

and the Hamiltonian vector field corresponding to H is:

XH = i

(
∂H

∂z

∂

∂z
− ∂H

∂z

∂

∂z

)
= i

(
z
∂

∂z
− z ∂

∂z

)
.

We can now use Proposition 5.3.2 to build prequantum operators. We note that
from Proposition 6.1.35 ẑ will be a well-defined operator on HP , since it is clear
that ∂

∂z z = 0. We calculate the prequantum operator ẑ:

ẑ = z + i∇i ∂
∂z

= z + i

(
i
∂

∂z
− i
(
i

2
(zdz − zdz)

(
i
∂

∂z

)))
= z + i

(
i
∂

∂z
+ i

z

2

)
=
z

2
− ∂

∂z
,
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and the prequantum operator ẑ:

ẑ = z + i∇−i ∂
∂z

= z + i

(
−i ∂
∂z
− i
(
i

2
(zdz − zdz)

(
−i ∂
∂z

)))
= z +

∂

∂z
− z

2

=
z

2
+

∂

∂z
.

We see that restricting the operator ẑ onHP yields ẑ = z
2 , since every function in

HP is holomorphic. We see that ẑ clearly preservesHP and is thus a well-defined
operator on HP . The operator ẑ does not preserve HP , since ∂z

∂z = 1 6= 0, i.e.
multiplication by z does not preserve polarised sections. Hence, we will compose
z with the projection πO to get a well-defined operator. We decompose zϕ
uniquely as πO(zϕ) + ψ, where ϕ ∈ HP and ψ ∈ (HP )⊥, and we compute the
following, for some g ∈ HP :

(zϕ | g) =
1

2π

∫
C
ϕgz exp(−|z|2)dq ∧ dp

(1)
= − 1

2π

∫
C
ϕg

∂

∂z
exp(−|z|2)dq ∧ dp

(2)
=

1

2π

∫
C

∂ϕ

∂z
g exp(−|z|2)dq ∧ dp− 1

2π

∫
C

∂

∂z
(ϕg exp(−|z|2))dq ∧ dp

(3)
=

1

2π

∫
C

∂ϕ

∂z
g exp(−|z|2)dq ∧ dp

=

(
∂

∂z
ϕ | g

)
.

(6.4)

We have used in (1) that z exp(−|z|2) = − ∂
∂z exp(−|z|2). We have then used in

(2) that ∂
∂z (ϕg exp(−|z|2)) = ϕg ∂

∂z exp(−|z|2) + ∂ϕ
∂z g exp(−|z|2), since ∂

∂z g = 0
as g is holomorphic. Finally, we can compute the following

∂

∂z
(ϕg exp(−|z|2))dq ∧ dp =

1√
2

∂

∂q
(fg exp(−|z|2))dq ∧ dp

− i√
2

∂

∂p
(fg exp(−|z|2))dq ∧ dp

= d

(
1√
2

(fg exp(−|z|2))dp

)
+ d

(
i√
2

(fg exp(−|z|2))dq

)
,

as dp ∧ dp = 0 and d(dp) = 0. With this calculation it follows from Stokes’
theorem that the second term vanishes in (3). Now we understand from what
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we have computed in (6.4) that for all g ∈ HP

(πO(zϕ) | g) = (zϕ | g) =

(
∂

∂z
ϕ

∣∣∣∣ g) ,
which is equivalent to (

πO(zϕ)− ∂

∂z

∣∣∣∣ g) = 0.

Since (· | ·) is positive definite and non-degenerate, it implies that

∂ϕ

∂z
− πO(zϕ) = 0.

Hence, the component of ẑ taking values in HP reads:

ẑ =
∂

∂z
+

1

2
πO ◦ z =

3

2

∂

∂z
.

This operator is a well-defined operator on HP since it preserves the Hilbert
space HP . Indeed, we compute the following for completion, with ϕ ∈ HP :

∂

∂z
(ẑϕ) =

∂

∂z
(
3

2

∂

∂z
ϕ) =

3

2

∂2ϕ

∂z∂z
= 0,

where we have used the symmetry of the partial derivatives.
We now move on to the prequantum Hamiltonian operator, which is given by:

Ĥ = H + i∇XH

= H + i(XH − iα|XH
)

= zz + i(XH − i
(
i

2
(zdz − zdz)(XH)

)
= zz −

(
z
∂

∂z
− z ∂

∂z

)
+

(
i

2
(zdz − zdz)i

(
z
∂

∂z
− z ∂

∂z

))
= zz −

(
z
∂

∂z
− z ∂

∂z

)
− zz

= z
∂

∂z
− z ∂

∂z
.

Letting the prequantum operator Ĥ act on elements of HP , we see that the
partial derivative with respect to z vanishes, as the functions in HP are holo-
morphic.
The operator Ĥ is a quantum operator, since it preserves the Hilbert space HP .
Indeed, we compute with ϕ ∈ HP :

∂

∂z
(Ĥϕ) =

∂

∂z
(z
∂

∂z
ϕ) = z

∂2ϕ

∂z∂z
= 0,
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where we have used ∂
∂z z = 0 and the symmetry of the partial derivatives.

Hence, the operators ẑ, ẑ and Ĥ are well-defined operator on HP which are
given by:

ẑϕ =
z

2
ϕ, ẑϕ =

3

2

∂ϕ

∂z
, Ĥϕ = z

∂ϕ

∂z
, ∀ϕ ∈ HP .

We can now calculate the energy spectrum of the quantum harmonic oscillator.
Our goal is to find an eigenbasis of Ĥ and their corresponding eigenvalues E.
We therefore have to solve the time-independent Schrödinger equation Ĥϕ =
z ∂
∂zϕ = Eϕ. The eigenvector ϕ is a stationary state of energy E.

We claim that the monomials form the desired eigenbasis. In the 1-dimensional
case, monomials are of the form (zl)l≥0 and Ĥ acts on them by

Ĥzl = z
∂

∂z
zl = lzl.

These monomials are clearly holomorphic, since ∂
∂z z

l = 0, ∀l ≥ 0. We also
calculate the norm of a monomial zl, l ≥ 0:

(zl | zl) =
1

2π

∫
R2

|z|2l exp(−|z|2)dq ∧ dp

(1)
=

1

2π

∫
R>0

∫ 2π

0

r2l+1 exp(−r2)dθdr

=

∫
R>0

r2l+1 exp(−r2)dr

(2)
=

Γ(l + 1)

2
(3)
=
l!

2
,

(6.5)

where we have used the transformation to polar coordinates in (1), i.e. z =
p + iq = r exp(iθ), the definition via indefinite integral of the gamma function
in (2), i.e. Γ(z) =

∫
R≥0

xz−1 exp(−x)dx, and the other definition of the gamma

function via Γ(l) = (l − 1)! in (3). Since l!
2 < ∞, we understand that the

monomials are indeed elements of the Segal-Bargmann space HP . They are
also orthogonal with respect to the inner product (· | ·) on HP as we will now
show explicitly. Let m 6= l be two integers and zm, zl be two monomials, we
then compute:

(zm | zl) =
1

2π

∫
R2

zmzl exp(−|z|2)dq ∧ dp

(1)
=

1

2π

∫
R≥0

rm+l+1 exp(−|r|2)dr

∫ 2π

0

exp(i(m+ l)θ)dθ

(2)
= 0,
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where we have used again polar coordinates in (1) and the fact that exp(i2(m+
l)π) = 1 = exp(0) in (2). We thus have shown that the monomials define an

orthogonal basis ofHP . From equation (6.5), the set
(√

2
l!z

l
)
l≥0

is an orthonor-

mal basis of HP and they form an eigenbasis of the Hamiltonian operator.
The energy El = l for monomials of degree l almost correponds (up to the con-
stant ~) to the known quantum mechanical energies which are ~

(
l + 1

2

)
. The

energy shift of 1
2 is the zero point energy. To correct this issue, one should re-

place our quantum operator Ĥ with the quantum operator Ĥ = z ∂
∂z + 1

2 . This
can be achieved with a metaplectic correction which we will not discuss. The
interested reader can find more about this topic in [2] Chapter 12.
On the eigenbasis of monomials, we see that the operators ẑ and ẑ correspond
to the creation and annihilation operators usually denoted by a†, a. Indeed, it
is clear that ẑ maps monomials of degree l to monomials of degree l + 1 and ẑ
maps monomials of degree l to monomials of degree l − 1. We also note that
the quantum operator of the 1-dimensional harmonic oscillator can be written
in terms of these two operators, indeed:

Ĥ =
4

3
ẑẑ.

This corresponds exactly to the structure of the quantum harmonic oscillator
system, known from quantum mechanics, where Ĥ = a†a up to a constant. We
therefore denote a† = 2ẑ = z and a = 2

3 ẑ = ∂
∂z .

We finally generalise the discussion to the n-dimensional harmonic oscillator.
The whole construction is very similar. We therefore won’t write the whole
derivation again but only the main results. The complexified symplectic form
is ω = i

∑n
j=1 dzj ∧ dzj . The quantum Hilbert space, the n-dimensional Segal-

Bargmann space, is given by:

HP :=

{
ϕ ∈ OM

∣∣∣∣ 1

2πn!

∫
C
|ϕ|2 exp(−|z|2)ω∧n <∞

}
,

where ω∧n = (i)ndz1 ∧ · · · ∧ dzn. The quantum operator of the n-dimensional
harmonic oscillator is given by

Ĥ =

n∑
j=1

zj
∂

∂zj
.

It corresponds to n uncoupled harmonic oscillators. The operators for ẑj and

ẑj are given by ẑj = 1
2zj and ẑj = 3

2
∂
∂zj

. The eigenbasis is formed by the mono-

mials, that is the set (zk11 zk22 · · · zknn | k1 + · · ·+ kn = l)l≥0. We understand that

their energies are again given by the degree of the monomial, i.e. zk11 zk22 · · · zknn
corresponds to the energy E = k1+· · ·+kn. The operator ẑj and ẑj are now cre-

ation and annihilation only for the z
kj
j -term, i.e. they correspond to the creation

and annihilation operators that we identify as a†j = zj and aj = ∂
∂zj

. The zero
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point energy is n
2 in the n-dimensional case. With the metaplectic correction,

we could find the correct Hamiltonian quantum operator which would take into
account this energy shift, i.e. Ĥ =

∑
j zj

∂
∂zj

+ n
2 =

∑
j

4
3 ẑj ẑj+ n

2 =
∑
j a
†
jaj+ n

2 .

6.3.3 Segal-Bargmann Transform

We now define the Segal–Bargmann space as a representation of the Weyl al-
gebra and we discuss the Segal–Bargmann transform which will enable us to
make sense of the Hamiltonian of the quantum harmonic oscillator in the real
polarisation case.
Let us first recall the definition of the Segal–Bargmann space:

Definition 6.3.1. The n-dimensional Segal-Bargmann space HL2(Cn) is the
space of holomorphic functions ϕ ∈ OCn for which∫

Cn

|ϕ|2 exp(−|z|2)dz1 · · · dzn < +∞.

As seen in the previous section the monomials

(zk11 zk22 · · · zknn )k1,··· ,kn≥0

form an orthogonal basis of the Segal–Bargmann space and the creation and
annihilation operators a†j = zj and aj = ∂

∂zj
are raising and lowering the index

of the jth-term.

Proposition 6.3.2. The creation and annihilation operators define a represen-
tation ρF : W → End(HL2(Cn)) of the Weyl algebra:

ρF (Xi) = ai, ρF (Yi) = a†i .

We call this representation the Fock representation.

Proof. We need to show that the creation and annihilation operators fulfil the
canonical commutation relations. We thus compute for ϕ ∈ HL2(Cn):

[ai, a
†
j ]ϕ =

[
∂

∂zi
, zj

]
ϕ

=
∂

∂zi
zjϕ− zj

∂

∂zi
ϕ

(1)
= δijϕ+ zj

∂

∂zi
ϕ− zj

∂

∂zi
ϕ

= δij ,

where we have used the Leibniz rule in (1).

We therefore know from the Stone–von Neumann theorem (see 4.3.7) that
there exists a unitary transformation B which intertwines the Schrödinger po-
sition representation and the Fock representation, i.e. ρF ◦ B = B ◦ ρSP . This
unitary transformation is called the Segal–Bargmann transform.
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Remark 6.3.3. One should actually show an exponentiated form of the commu-
tation relation to use the Stone–von Neumann theorem. The interested reader
can find such a discussion in [4] Section 14.4.2.

Theorem 6.3.4. The Segal–Bargmann transform B : L2(Rn) → HL2(Cn) is
defined for all ψ ∈ L2(Rn) by:

(Bψ)(z) :=

∫
Rn

exp

(
−1

2
(z · z − 2

√
2z · x+ x · x)

)
ψ(x)dx,

where z ∈ Cn and the product · is defined as a · b =
∑
j ajbj for all a, b ∈ Cn.

Remark 6.3.5. One can actually normalise the Segal–Bargmann transform
such that for example the ground state of the harmonic oscillator φ0 ∈ L2(Rn)
is mapped to 1 ∈ HL2(Cn). This is however not necessary since the quantum
system is a projective space and therefore any choice of multiplicative constant in
the definition of the Segal–Bargmann transform would yield the same quantum
system.

The proof of this theorem can be found in [4] Section 14.4.4. We now apply
the Segal–Bargmann transform to the position and momentum operators from
L2(Rn).

Proposition 6.3.6. The Segal–Bargmann transform intertwines the position
and momentum operators q̂j , p̂j in the following way:

B
(
q̂j + ip̂j√

2

)
B−1 = aj

B
(
q̂j − ip̂j√

2

)
B−1 = a†j .

(6.6)

Proof (Sketch). We restrict ourselves to the 1-dimensional case as the calcu-
lation is analogous for the n-dimensional case. We show (6.6) for smooth and
rapidly decaying functions ψ ∈ L2(R). Up to multiplying B on the right, proving
(6.6) is equivalent to showing:

B q̂ + ip̂√
2

=
∂

∂z
B

B q̂ − ip̂√
2

= zB.
(6.7)

We now compute the right hand side of the first equation of 6.7:

∂

∂z
(Bψ)(z)

(1)
=

∫
Rn

∂

∂z
exp

(
−1

2
(z · z − 2

√
2z · x+ x · x)

)
ψ(x)dx

=

∫
Rn

(−z +
√

2x) exp

(
−1

2
(z · z − 2

√
2z · x+ x · x)

)
ψdx

=
√

2B(xψ)(z)− z(Bψ)(z),
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where we can differentiate under the integral in (1) because of the assumptions
on ψ. This means that

∂

∂z
B =

√
2Bx− zB. (6.8)

We then compute the image of the derivative under the Segal–Bargmann trans-
form:

B
(
∂ψ

∂x

)
(z) =

∫
Rn

exp

(
−1

2
(z · z − 2

√
2z · x+ x · x)

)
∂ψ

∂x
dx

(1)
= −

∫
Rn

(
√

2z − x) exp

(
−1

2
(z · z − 2

√
2z · x+ x · x)

)
ψdx

= B(xψ)(z)−
√

2z(Bψ)(z),

where in (1) integration by part is used and the boundary term vanishes because
of the assumptions on ψ. Therefore

B ∂

∂x
= Bx−

√
2zB. (6.9)

We can now combine both results. First, we replace zB in equation (6.8) with
what was found in equation (6.9) and we find:

∂

∂z
B = B 1√

2

(
x+

∂

∂x

)
= B q̂ − ip̂√

2
,

which is the first equation in (6.6). We can then replace ∂
∂zB and isolate zB in

equation (6.8). We find:

zB = B 1√
2

(
x− ∂

∂x

)
= B q̂ + ip̂√

2
,

which is the second equation in (6.6).

We now transform the Hamiltonian of the quantum harmonic oscillator ĤSB

found in the Segal-Bargmann space into the Schrödinger position representa-
tion, which we will denote ĤSP . We recall that the Hamiltonian in the Segal–
Bargmann space was given by ĤSB =

∑
j a
†
jaj (neglecting the constant 4

3 be-
cause it is dynamically irrelevant). We now know how the Segal–Bargmann
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transform maps this Hamiltonian operator. Indeed, we can compute:

ĤSP = B−1ĤSBB

= B−1
∑
j

a†jajB

=
∑
j

B−1a†jBB
−1ajB

(1)
=
∑
j

(
q̂j − ip̂j√

2

)(
q̂j + ip̂j√

2

)

=
∑
j

q̂2
j + p̂2

j

2
+
i

2
(q̂j p̂j − p̂j q̂j)

(2)
= −n

2
+
∑
j

q̂2
j + p̂2

j

2
,

where we have used equations (6.6) in (1) and the commutation relation q̂j p̂j −
p̂j q̂j = [q̂j , p̂j ] = i in (2). With the metaplectic correction, we would get:

ĤSP = B−1ĤSBB = B−1
∑
j

a†jajB + B−1
(n

2

)
B =

∑
j

q̂2
j + p̂2

j

2
.

This corresponds to the Hamiltonian of the quantum harmonic oscillator in
the Schrödinger position representation (up to some coefficient that we have
neglected, see discussion at the beginning of 6.3.1) known from quantum me-
chanics, see Example 4.4.3. The energy spectrum is then exactly given by
El = l + n

2 , l ∈ N, as desired.
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